Panpan Lei, Jinna Liang, Xinyue Su, Jiapan Gao, Bingxi Ren, Xiaoyu Ma, Yuxiu Zhang, Weina Ma
{"title":"假极性酸 B 可抑制 FLT4 诱导的非小细胞肺癌增殖和迁移","authors":"Panpan Lei, Jinna Liang, Xinyue Su, Jiapan Gao, Bingxi Ren, Xiaoyu Ma, Yuxiu Zhang, Weina Ma","doi":"10.2174/0118715206313028240819103933","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Non-Small Cell Lung Cancer (NSCLC) has attracted much attention on account of the high incidence and mortality of cancers. Vascular Endothelial Growth Factor Receptor 3 (VEGFR3/FLT4), which is a highly expressed receptor in NSCLC, greatly regulates cancer proliferation and migration. Pseudolaric Acid B (PAB) is a diterpenoid acid with antitumor activity isolated from <i>Pseudolarix kaempferi.</i> This study aimed to explore the inhibitory effect of PAB targeting FLT4 in NSCLC.</p><p><strong>Methods: </strong>Cell membrane chromatography was used to evaluate the affinity of PAB binding on FLT4. NCIH1299 cells were used in this study, and an MTT assay was performed to determine the anti-proliferation effect of PAB. Cell cycle analysis was conducted to study the cycle arrest of PAB. Wound healing and Transwell assays assessed the rate of cell migration. Western blot analysis evaluated the expression of related proteins.</p><p><strong>Results: </strong>PAB showed strong affinity to FLT4 with a <i>K<sub>D</sub></i> value of 3.01 × 10<sup>- 6</sup> M. Targeting FLT4 by PAB inactivated downstream P38MAPK and PI3K/AKT pathways, which inhibited the proliferation of NCI-H1299 cells. Meanwhile, PAB promoted G2/M phase arrest by influencing CyclinB1 and CDK1 complex formation to inhibit NCI-H1299 cell growth, but the effect was attenuated by knocking down the FLT4. Besides, PAB regulated MMP9 secretion through the Wnt/β-catenin signaling pathway to inhibit NCI-H1299 cell migration. However, the ability of PAB to inhibit migration was significantly weakened by FLT4 knockdown in NCI-H1299 cells.</p><p><strong>Conclusion: </strong>PAB can inhibit the proliferation and migration of NSCLC cells through targeting FLT4 and is expected to be a promising FLT4 inhibitor for NSCLC treatment.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"1419-1430"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudolaric Acid B Inhibits FLT4-induced Proliferation and Migration in Non-small Cell Lung Cancer.\",\"authors\":\"Panpan Lei, Jinna Liang, Xinyue Su, Jiapan Gao, Bingxi Ren, Xiaoyu Ma, Yuxiu Zhang, Weina Ma\",\"doi\":\"10.2174/0118715206313028240819103933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Non-Small Cell Lung Cancer (NSCLC) has attracted much attention on account of the high incidence and mortality of cancers. Vascular Endothelial Growth Factor Receptor 3 (VEGFR3/FLT4), which is a highly expressed receptor in NSCLC, greatly regulates cancer proliferation and migration. Pseudolaric Acid B (PAB) is a diterpenoid acid with antitumor activity isolated from <i>Pseudolarix kaempferi.</i> This study aimed to explore the inhibitory effect of PAB targeting FLT4 in NSCLC.</p><p><strong>Methods: </strong>Cell membrane chromatography was used to evaluate the affinity of PAB binding on FLT4. NCIH1299 cells were used in this study, and an MTT assay was performed to determine the anti-proliferation effect of PAB. Cell cycle analysis was conducted to study the cycle arrest of PAB. Wound healing and Transwell assays assessed the rate of cell migration. Western blot analysis evaluated the expression of related proteins.</p><p><strong>Results: </strong>PAB showed strong affinity to FLT4 with a <i>K<sub>D</sub></i> value of 3.01 × 10<sup>- 6</sup> M. Targeting FLT4 by PAB inactivated downstream P38MAPK and PI3K/AKT pathways, which inhibited the proliferation of NCI-H1299 cells. Meanwhile, PAB promoted G2/M phase arrest by influencing CyclinB1 and CDK1 complex formation to inhibit NCI-H1299 cell growth, but the effect was attenuated by knocking down the FLT4. Besides, PAB regulated MMP9 secretion through the Wnt/β-catenin signaling pathway to inhibit NCI-H1299 cell migration. However, the ability of PAB to inhibit migration was significantly weakened by FLT4 knockdown in NCI-H1299 cells.</p><p><strong>Conclusion: </strong>PAB can inhibit the proliferation and migration of NSCLC cells through targeting FLT4 and is expected to be a promising FLT4 inhibitor for NSCLC treatment.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"1419-1430\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206313028240819103933\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206313028240819103933","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Pseudolaric Acid B Inhibits FLT4-induced Proliferation and Migration in Non-small Cell Lung Cancer.
Objectives: Non-Small Cell Lung Cancer (NSCLC) has attracted much attention on account of the high incidence and mortality of cancers. Vascular Endothelial Growth Factor Receptor 3 (VEGFR3/FLT4), which is a highly expressed receptor in NSCLC, greatly regulates cancer proliferation and migration. Pseudolaric Acid B (PAB) is a diterpenoid acid with antitumor activity isolated from Pseudolarix kaempferi. This study aimed to explore the inhibitory effect of PAB targeting FLT4 in NSCLC.
Methods: Cell membrane chromatography was used to evaluate the affinity of PAB binding on FLT4. NCIH1299 cells were used in this study, and an MTT assay was performed to determine the anti-proliferation effect of PAB. Cell cycle analysis was conducted to study the cycle arrest of PAB. Wound healing and Transwell assays assessed the rate of cell migration. Western blot analysis evaluated the expression of related proteins.
Results: PAB showed strong affinity to FLT4 with a KD value of 3.01 × 10- 6 M. Targeting FLT4 by PAB inactivated downstream P38MAPK and PI3K/AKT pathways, which inhibited the proliferation of NCI-H1299 cells. Meanwhile, PAB promoted G2/M phase arrest by influencing CyclinB1 and CDK1 complex formation to inhibit NCI-H1299 cell growth, but the effect was attenuated by knocking down the FLT4. Besides, PAB regulated MMP9 secretion through the Wnt/β-catenin signaling pathway to inhibit NCI-H1299 cell migration. However, the ability of PAB to inhibit migration was significantly weakened by FLT4 knockdown in NCI-H1299 cells.
Conclusion: PAB can inhibit the proliferation and migration of NSCLC cells through targeting FLT4 and is expected to be a promising FLT4 inhibitor for NSCLC treatment.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.