J Krummeich, L Nardi, C Caliendo, D Aschauer, V Engelhardt, A Arlt, J Maier, F Bicker, M D Kwiatkowski, K Rolski, K Vincze, R Schneider, S Rumpel, S Gerber, M J Schmeisser, S Schweiger
{"title":"结节性硬化症小鼠模型的认知能力早衰。","authors":"J Krummeich, L Nardi, C Caliendo, D Aschauer, V Engelhardt, A Arlt, J Maier, F Bicker, M D Kwiatkowski, K Rolski, K Vincze, R Schneider, S Rumpel, S Gerber, M J Schmeisser, S Schweiger","doi":"10.1111/acel.14318","DOIUrl":null,"url":null,"abstract":"<p><p>Little is known about the influence of (impaired) neurodevelopment on cognitive aging. We here used a mouse model for tuberous sclerosis (TS) carrying a heterozygous deletion of the Tsc2 gene. Loss of Tsc2 function leads to mTOR hyperactivity in mice and patients. In a longitudinal behavioral analysis, we found premature decline of hippocampus-based cognitive functions together with a significant reduction of immediate early gene (IEG) expression. While we did not detect any morphological changes of hippocampal projections and synaptic contacts, molecular markers of neurodegeneration were increased and the mTOR signaling cascade was downregulated in hippocampal synaptosomes. Injection of IGF2, a molecule that induces mTOR signaling, could fully rescue cognitive impairment and IEG expression in aging Tsc2<sup>+/-</sup> animals. This data suggests that TS is an exhausting disease that causes erosion of the mTOR pathway over time and IGF2 is a promising avenue for treating age-related degeneration in mTORopathies.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14318"},"PeriodicalIF":8.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Premature cognitive decline in a mouse model of tuberous sclerosis.\",\"authors\":\"J Krummeich, L Nardi, C Caliendo, D Aschauer, V Engelhardt, A Arlt, J Maier, F Bicker, M D Kwiatkowski, K Rolski, K Vincze, R Schneider, S Rumpel, S Gerber, M J Schmeisser, S Schweiger\",\"doi\":\"10.1111/acel.14318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Little is known about the influence of (impaired) neurodevelopment on cognitive aging. We here used a mouse model for tuberous sclerosis (TS) carrying a heterozygous deletion of the Tsc2 gene. Loss of Tsc2 function leads to mTOR hyperactivity in mice and patients. In a longitudinal behavioral analysis, we found premature decline of hippocampus-based cognitive functions together with a significant reduction of immediate early gene (IEG) expression. While we did not detect any morphological changes of hippocampal projections and synaptic contacts, molecular markers of neurodegeneration were increased and the mTOR signaling cascade was downregulated in hippocampal synaptosomes. Injection of IGF2, a molecule that induces mTOR signaling, could fully rescue cognitive impairment and IEG expression in aging Tsc2<sup>+/-</sup> animals. This data suggests that TS is an exhausting disease that causes erosion of the mTOR pathway over time and IGF2 is a promising avenue for treating age-related degeneration in mTORopathies.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14318\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14318\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14318","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Premature cognitive decline in a mouse model of tuberous sclerosis.
Little is known about the influence of (impaired) neurodevelopment on cognitive aging. We here used a mouse model for tuberous sclerosis (TS) carrying a heterozygous deletion of the Tsc2 gene. Loss of Tsc2 function leads to mTOR hyperactivity in mice and patients. In a longitudinal behavioral analysis, we found premature decline of hippocampus-based cognitive functions together with a significant reduction of immediate early gene (IEG) expression. While we did not detect any morphological changes of hippocampal projections and synaptic contacts, molecular markers of neurodegeneration were increased and the mTOR signaling cascade was downregulated in hippocampal synaptosomes. Injection of IGF2, a molecule that induces mTOR signaling, could fully rescue cognitive impairment and IEG expression in aging Tsc2+/- animals. This data suggests that TS is an exhausting disease that causes erosion of the mTOR pathway over time and IGF2 is a promising avenue for treating age-related degeneration in mTORopathies.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.