{"title":"等效度量变化下的主-多因素问题:一般研究和存在结果","authors":"Nicolás Hernández-Santibáñez","doi":"10.1016/j.spa.2024.104448","DOIUrl":null,"url":null,"abstract":"<div><p>We study a general contracting problem between the principal and a finite set of competitive agents, who perform equivalent changes of measure by controlling the drift of the output process and the compensator of its associated jump measure. In this setting, we generalize the dynamic programming approach developed by Cvitanić et al. (2018) and we also relax their assumptions. We prove that the problem of the principal can be reformulated as a standard stochastic control problem in which she controls the continuation utility (or certainty equivalent) processes of the agents. Our assumptions and conditions on the admissible contracts are minimal to make our approach work. We review part of the literature and give examples on how they are usually satisfied. We also present a smoothness result for the value function of a risk–neutral principal when the agents have exponential utility functions. This leads, under some additional assumptions, to the existence of an optimal contract.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"177 ","pages":"Article 104448"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principal-Multiagents problem under equivalent changes of measure: General study and an existence result\",\"authors\":\"Nicolás Hernández-Santibáñez\",\"doi\":\"10.1016/j.spa.2024.104448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a general contracting problem between the principal and a finite set of competitive agents, who perform equivalent changes of measure by controlling the drift of the output process and the compensator of its associated jump measure. In this setting, we generalize the dynamic programming approach developed by Cvitanić et al. (2018) and we also relax their assumptions. We prove that the problem of the principal can be reformulated as a standard stochastic control problem in which she controls the continuation utility (or certainty equivalent) processes of the agents. Our assumptions and conditions on the admissible contracts are minimal to make our approach work. We review part of the literature and give examples on how they are usually satisfied. We also present a smoothness result for the value function of a risk–neutral principal when the agents have exponential utility functions. This leads, under some additional assumptions, to the existence of an optimal contract.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"177 \",\"pages\":\"Article 104448\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001546\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001546","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Principal-Multiagents problem under equivalent changes of measure: General study and an existence result
We study a general contracting problem between the principal and a finite set of competitive agents, who perform equivalent changes of measure by controlling the drift of the output process and the compensator of its associated jump measure. In this setting, we generalize the dynamic programming approach developed by Cvitanić et al. (2018) and we also relax their assumptions. We prove that the problem of the principal can be reformulated as a standard stochastic control problem in which she controls the continuation utility (or certainty equivalent) processes of the agents. Our assumptions and conditions on the admissible contracts are minimal to make our approach work. We review part of the literature and give examples on how they are usually satisfied. We also present a smoothness result for the value function of a risk–neutral principal when the agents have exponential utility functions. This leads, under some additional assumptions, to the existence of an optimal contract.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.