SFML:基于分裂学习和相互学习的个性化、高效和保护隐私的协作式流量分类架构

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
{"title":"SFML:基于分裂学习和相互学习的个性化、高效和保护隐私的协作式流量分类架构","authors":"","doi":"10.1016/j.future.2024.107487","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic classification is essential for network management and optimization, enhancing user experience, network performance, and security. However, evolving technologies and complex network environments pose challenges. Recently, researchers have turned to machine learning for traffic classification due to its ability to automatically extract and distinguish traffic features, outperforming traditional methods in handling complex patterns and environmental changes while maintaining high accuracy. Federated learning, a distributed learning approach, enables model training without revealing original data, making it appealing for traffic classification to safeguard user privacy and data security. However, applying it to this task poses two challenges. Firstly, common client devices like routers and switches have limited computing resources, which can hinder efficient training and increase time costs. Secondly, real-world applications often demand personalized models and tasks for clients, posing further complexities. To address these issues, we propose Split Federated Mutual Learning (SFML), an innovative federated learning architecture designed for traffic classification that combines split learning and mutual learning. In SFML, each client maintains two models: a privacy model for the local task and a public model for the global task. These two models learn from each other through knowledge distillation. Furthermore, by leveraging split learning, we offload most of the computational tasks to the server, significantly reducing the computational burden on the client. Experimental results demonstrate that SFML outperforms typical training architectures in terms of convergence speed, model performance, and privacy protection. Not only does SFML improve training efficiency, but it also satisfies the personalized needs of clients and reduces their computational workload and communication overhead, providing users with a superior network experience.</p></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SFML: A personalized, efficient, and privacy-preserving collaborative traffic classification architecture based on split learning and mutual learning\",\"authors\":\"\",\"doi\":\"10.1016/j.future.2024.107487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traffic classification is essential for network management and optimization, enhancing user experience, network performance, and security. However, evolving technologies and complex network environments pose challenges. Recently, researchers have turned to machine learning for traffic classification due to its ability to automatically extract and distinguish traffic features, outperforming traditional methods in handling complex patterns and environmental changes while maintaining high accuracy. Federated learning, a distributed learning approach, enables model training without revealing original data, making it appealing for traffic classification to safeguard user privacy and data security. However, applying it to this task poses two challenges. Firstly, common client devices like routers and switches have limited computing resources, which can hinder efficient training and increase time costs. Secondly, real-world applications often demand personalized models and tasks for clients, posing further complexities. To address these issues, we propose Split Federated Mutual Learning (SFML), an innovative federated learning architecture designed for traffic classification that combines split learning and mutual learning. In SFML, each client maintains two models: a privacy model for the local task and a public model for the global task. These two models learn from each other through knowledge distillation. Furthermore, by leveraging split learning, we offload most of the computational tasks to the server, significantly reducing the computational burden on the client. Experimental results demonstrate that SFML outperforms typical training architectures in terms of convergence speed, model performance, and privacy protection. Not only does SFML improve training efficiency, but it also satisfies the personalized needs of clients and reduces their computational workload and communication overhead, providing users with a superior network experience.</p></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24004436\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24004436","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

流量分类对于网络管理和优化、提升用户体验、网络性能和安全性至关重要。然而,不断发展的技术和复杂的网络环境带来了挑战。最近,研究人员将流量分类的研究转向了机器学习,因为机器学习能够自动提取和区分流量特征,在处理复杂模式和环境变化方面优于传统方法,同时还能保持较高的准确性。联邦学习是一种分布式学习方法,可在不泄露原始数据的情况下进行模型训练,因此在交通分类中很有吸引力,可保护用户隐私和数据安全。然而,将其应用于这项任务会面临两个挑战。首先,路由器和交换机等普通客户端设备的计算资源有限,这可能会阻碍高效训练并增加时间成本。其次,现实世界中的应用往往要求为客户提供个性化的模型和任务,这就带来了更多的复杂性。为了解决这些问题,我们提出了分离式联合相互学习(SFML),这是一种创新的联合学习架构,设计用于将分离式学习和相互学习相结合的流量分类。在 SFML 中,每个客户端维护两个模型:一个是本地任务的隐私模型,另一个是全局任务的公共模型。这两个模型通过知识提炼相互学习。此外,通过利用拆分学习,我们将大部分计算任务卸载到服务器上,大大减轻了客户端的计算负担。实验结果表明,SFML 在收敛速度、模型性能和隐私保护方面都优于典型的训练架构。SFML 不仅提高了训练效率,还满足了客户端的个性化需求,减少了客户端的计算工作量和通信开销,为用户提供了卓越的网络体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SFML: A personalized, efficient, and privacy-preserving collaborative traffic classification architecture based on split learning and mutual learning

Traffic classification is essential for network management and optimization, enhancing user experience, network performance, and security. However, evolving technologies and complex network environments pose challenges. Recently, researchers have turned to machine learning for traffic classification due to its ability to automatically extract and distinguish traffic features, outperforming traditional methods in handling complex patterns and environmental changes while maintaining high accuracy. Federated learning, a distributed learning approach, enables model training without revealing original data, making it appealing for traffic classification to safeguard user privacy and data security. However, applying it to this task poses two challenges. Firstly, common client devices like routers and switches have limited computing resources, which can hinder efficient training and increase time costs. Secondly, real-world applications often demand personalized models and tasks for clients, posing further complexities. To address these issues, we propose Split Federated Mutual Learning (SFML), an innovative federated learning architecture designed for traffic classification that combines split learning and mutual learning. In SFML, each client maintains two models: a privacy model for the local task and a public model for the global task. These two models learn from each other through knowledge distillation. Furthermore, by leveraging split learning, we offload most of the computational tasks to the server, significantly reducing the computational burden on the client. Experimental results demonstrate that SFML outperforms typical training architectures in terms of convergence speed, model performance, and privacy protection. Not only does SFML improve training efficiency, but it also satisfies the personalized needs of clients and reduces their computational workload and communication overhead, providing users with a superior network experience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信