{"title":"整合可解释的机器学习和以用户为中心的心血管疾病诊断模型:一种新方法","authors":"Gangani Dharmarathne , Madhusha Bogahawaththa , Upaka Rathnayake , D.P.P. Meddage","doi":"10.1016/j.iswa.2024.200428","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional machine learning techniques in diagnosing cardiovascular disease have a limitation owing to the lack of interpretability of models. This study utilised an explainable machine learning approach to predict the likelihood of having CVD. Four machine learning models were employed for CVD diagnosis: Decision Tree (DT), K-Nearest Neighbor (KNN), Random Forest (RF), and Extreme Gradient Boost (XGB). Shapley Additive Explanations (SHAP) were used to provide reasoning for the models' predictions. Using these models and explanations, a user interface was developed to assist in diagnosing CVD. All four classification models demonstrated good accuracy in diagnosing CVD, with the KNN model showcasing the best performance (Accuracy: 71 %). SHAP provided the reasoning behind KNN predictions, and the predictive interface was developed by embedding these explanations to provide transparency behind the model's decisions.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"23 ","pages":"Article 200428"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324001029/pdfft?md5=40d5d256c670f94ade9890d52463a6a1&pid=1-s2.0-S2667305324001029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating explainable machine learning and user-centric model for diagnosing cardiovascular disease: A novel approach\",\"authors\":\"Gangani Dharmarathne , Madhusha Bogahawaththa , Upaka Rathnayake , D.P.P. Meddage\",\"doi\":\"10.1016/j.iswa.2024.200428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional machine learning techniques in diagnosing cardiovascular disease have a limitation owing to the lack of interpretability of models. This study utilised an explainable machine learning approach to predict the likelihood of having CVD. Four machine learning models were employed for CVD diagnosis: Decision Tree (DT), K-Nearest Neighbor (KNN), Random Forest (RF), and Extreme Gradient Boost (XGB). Shapley Additive Explanations (SHAP) were used to provide reasoning for the models' predictions. Using these models and explanations, a user interface was developed to assist in diagnosing CVD. All four classification models demonstrated good accuracy in diagnosing CVD, with the KNN model showcasing the best performance (Accuracy: 71 %). SHAP provided the reasoning behind KNN predictions, and the predictive interface was developed by embedding these explanations to provide transparency behind the model's decisions.</p></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"23 \",\"pages\":\"Article 200428\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667305324001029/pdfft?md5=40d5d256c670f94ade9890d52463a6a1&pid=1-s2.0-S2667305324001029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324001029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324001029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating explainable machine learning and user-centric model for diagnosing cardiovascular disease: A novel approach
Conventional machine learning techniques in diagnosing cardiovascular disease have a limitation owing to the lack of interpretability of models. This study utilised an explainable machine learning approach to predict the likelihood of having CVD. Four machine learning models were employed for CVD diagnosis: Decision Tree (DT), K-Nearest Neighbor (KNN), Random Forest (RF), and Extreme Gradient Boost (XGB). Shapley Additive Explanations (SHAP) were used to provide reasoning for the models' predictions. Using these models and explanations, a user interface was developed to assist in diagnosing CVD. All four classification models demonstrated good accuracy in diagnosing CVD, with the KNN model showcasing the best performance (Accuracy: 71 %). SHAP provided the reasoning behind KNN predictions, and the predictive interface was developed by embedding these explanations to provide transparency behind the model's decisions.