再论查克-科丁顿模型的实空间重正化方法改进统计

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Syl Shaw, Rudolf A. Römer
{"title":"再论查克-科丁顿模型的实空间重正化方法改进统计","authors":"Syl Shaw,&nbsp;Rudolf A. Römer","doi":"10.1016/j.physe.2024.116073","DOIUrl":null,"url":null,"abstract":"<div><p>The real-space renormalisation group method can be applied to the Chalker–Coddington model of the quantum Hall transition to provide a convenient numerical estimation of the localisation critical exponent, <span><math><mi>ν</mi></math></span>. Previous such studies found <span><math><mrow><mi>ν</mi><mo>∼</mo><mn>2</mn><mo>.</mo><mn>39</mn></mrow></math></span> which falls considerably short of the current best estimates by transfer matrix (<span><math><mrow><mi>ν</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>593</mn><mfrac><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>005</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>006</mn></mrow></mfrac></mrow></math></span>) and exact-diagonalisation studies (<span><math><mrow><mi>ν</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>58</mn><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>). By increasing the amount of data 500 fold we can now measure closer to the critical point and find an improved estimate <span><math><mrow><mi>ν</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>51</mn><mfrac><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>11</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>11</mn></mrow></mfrac></mrow></math></span>. This deviates only <span><math><mo>∼</mo></math></span>3% from the previous two values and is already better than the <span><math><mo>∼</mo></math></span>7% accuracy of the classical small-cell renormalisation approach from which our method is adapted. We also study a previously proposed mixing of the Chalker–Coddington model with a classical scattering model which is meant to provide a route to understanding why experimental estimates give a lower <span><math><mrow><mi>ν</mi><mo>∼</mo><mn>2</mn><mo>.</mo><mn>3</mn></mrow></math></span>. Upon implementing this mixing into our RG unit, we find only further increases to the value of <span><math><mi>ν</mi></math></span>.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116073"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1386947724001772/pdfft?md5=c9170baec10fa6678b63160e5333c9fa&pid=1-s2.0-S1386947724001772-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Real-space renormalisation approach to the Chalker–Coddington model revisited: Improved statistics\",\"authors\":\"Syl Shaw,&nbsp;Rudolf A. Römer\",\"doi\":\"10.1016/j.physe.2024.116073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The real-space renormalisation group method can be applied to the Chalker–Coddington model of the quantum Hall transition to provide a convenient numerical estimation of the localisation critical exponent, <span><math><mi>ν</mi></math></span>. Previous such studies found <span><math><mrow><mi>ν</mi><mo>∼</mo><mn>2</mn><mo>.</mo><mn>39</mn></mrow></math></span> which falls considerably short of the current best estimates by transfer matrix (<span><math><mrow><mi>ν</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>593</mn><mfrac><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>005</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>006</mn></mrow></mfrac></mrow></math></span>) and exact-diagonalisation studies (<span><math><mrow><mi>ν</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>58</mn><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>). By increasing the amount of data 500 fold we can now measure closer to the critical point and find an improved estimate <span><math><mrow><mi>ν</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>51</mn><mfrac><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>11</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>11</mn></mrow></mfrac></mrow></math></span>. This deviates only <span><math><mo>∼</mo></math></span>3% from the previous two values and is already better than the <span><math><mo>∼</mo></math></span>7% accuracy of the classical small-cell renormalisation approach from which our method is adapted. We also study a previously proposed mixing of the Chalker–Coddington model with a classical scattering model which is meant to provide a route to understanding why experimental estimates give a lower <span><math><mrow><mi>ν</mi><mo>∼</mo><mn>2</mn><mo>.</mo><mn>3</mn></mrow></math></span>. Upon implementing this mixing into our RG unit, we find only further increases to the value of <span><math><mi>ν</mi></math></span>.</p></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"165 \",\"pages\":\"Article 116073\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1386947724001772/pdfft?md5=c9170baec10fa6678b63160e5333c9fa&pid=1-s2.0-S1386947724001772-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724001772\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724001772","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

实空间重正化群方法可应用于量子霍尔转换的查克-科丁顿模型,从而方便地对局域化临界指数ν进行数值估算。以前的此类研究发现ν∼2.39,这与目前通过转移矩阵(ν=2.593+0.005-0.006)和精确对角研究(ν=2.58(3))得出的最佳估计值相差甚远。通过增加 500 倍的数据量,我们现在可以测量到更接近临界点的数据,并找到一个改进的估计值 ν=2.51+0.11-0.11。这与前两个值的偏差仅为 ∼3%,已经优于经典小单元重正化方法的 ∼7%,而我们的方法正是从经典小单元重正化方法改编而来的。我们还研究了之前提出的将查克-科丁顿模型与经典散射模型混合的方法,其目的是为理解为什么实验估计值会给出较低的ν∼2.3提供一条途径。在我们的 RG 单元中实施这种混合后,我们发现 ν 值只会进一步增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-space renormalisation approach to the Chalker–Coddington model revisited: Improved statistics

The real-space renormalisation group method can be applied to the Chalker–Coddington model of the quantum Hall transition to provide a convenient numerical estimation of the localisation critical exponent, ν. Previous such studies found ν2.39 which falls considerably short of the current best estimates by transfer matrix (ν=2.593+0.0050.006) and exact-diagonalisation studies (ν=2.58(3)). By increasing the amount of data 500 fold we can now measure closer to the critical point and find an improved estimate ν=2.51+0.110.11. This deviates only 3% from the previous two values and is already better than the 7% accuracy of the classical small-cell renormalisation approach from which our method is adapted. We also study a previously proposed mixing of the Chalker–Coddington model with a classical scattering model which is meant to provide a route to understanding why experimental estimates give a lower ν2.3. Upon implementing this mixing into our RG unit, we find only further increases to the value of ν.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信