两个四元变量中切片正则多项式的结果项

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Anna Gori , Giulia Sarfatti , Fabio Vlacci
{"title":"两个四元变量中切片正则多项式的结果项","authors":"Anna Gori ,&nbsp;Giulia Sarfatti ,&nbsp;Fabio Vlacci","doi":"10.1016/j.cagd.2024.102381","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a non-commutative resultant, for slice regular polynomials in two quaternionic variables, defined in terms of a suitable Dieudonné determinant. We use this tool to investigate the existence of common zeros and common factors of slice regular polynomials and we give a kinematic interpretation of our results.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"114 ","pages":"Article 102381"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resultants of slice regular polynomials in two quaternionic variables\",\"authors\":\"Anna Gori ,&nbsp;Giulia Sarfatti ,&nbsp;Fabio Vlacci\",\"doi\":\"10.1016/j.cagd.2024.102381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a non-commutative resultant, for slice regular polynomials in two quaternionic variables, defined in terms of a suitable Dieudonné determinant. We use this tool to investigate the existence of common zeros and common factors of slice regular polynomials and we give a kinematic interpretation of our results.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"114 \",\"pages\":\"Article 102381\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624001158\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624001158","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们为两个四元变量中的切片正多项式引入了一种非交换结果,它是根据合适的 Dieudonné 行列式定义的。我们利用这一工具来研究切片正则多项式的共零点和共因数的存在性,并给出了我们的结果的运动学解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resultants of slice regular polynomials in two quaternionic variables

We introduce a non-commutative resultant, for slice regular polynomials in two quaternionic variables, defined in terms of a suitable Dieudonné determinant. We use this tool to investigate the existence of common zeros and common factors of slice regular polynomials and we give a kinematic interpretation of our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Aided Geometric Design
Computer Aided Geometric Design 工程技术-计算机:软件工程
CiteScore
3.50
自引率
13.30%
发文量
57
审稿时长
60 days
期刊介绍: The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following: -Mathematical and Geometric Foundations- Curve, Surface, and Volume generation- CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision- Industrial, medical, and scientific applications. The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信