Yufei Tang , Tianling Lyu , Haoyang Jin , Qiang Du , Jiping Wang , Yunxiang Li , Ming Li , Yang Chen , Jian Zheng
{"title":"利用迭代知识转移和风格泛化学习实现领域自适应降噪","authors":"Yufei Tang , Tianling Lyu , Haoyang Jin , Qiang Du , Jiping Wang , Yunxiang Li , Ming Li , Yang Chen , Jian Zheng","doi":"10.1016/j.media.2024.103327","DOIUrl":null,"url":null,"abstract":"<div><p>Low-dose computed tomography (LDCT) denoising tasks face significant challenges in practical imaging scenarios. Supervised methods encounter difficulties in real-world scenarios as there are no paired data for training. Moreover, when applied to datasets with varying noise patterns, these methods may experience decreased performance owing to the domain gap. Conversely, unsupervised methods do not require paired data and can be directly trained on real-world data. However, they often exhibit inferior performance compared to supervised methods. To address this issue, it is necessary to leverage the strengths of these supervised and unsupervised methods. In this paper, we propose a novel domain adaptive noise reduction framework (DANRF), which integrates both knowledge transfer and style generalization learning to effectively tackle the domain gap problem. Specifically, an iterative knowledge transfer method with knowledge distillation is selected to train the target model using unlabeled target data and a pre-trained source model trained with paired simulation data. Meanwhile, we introduce the mean teacher mechanism to update the source model, enabling it to adapt to the target domain. Furthermore, an iterative style generalization learning process is also designed to enrich the style diversity of the training dataset. We evaluate the performance of our approach through experiments conducted on multi-source datasets. The results demonstrate the feasibility and effectiveness of our proposed DANRF model in multi-source LDCT image processing tasks. Given its hybrid nature, which combines the advantages of supervised and unsupervised learning, and its ability to bridge domain gaps, our approach is well-suited for improving practical low-dose CT imaging in clinical settings. Code for our proposed approach is publicly available at <span><span>https://github.com/tyfeiii/DANRF</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"98 ","pages":"Article 103327"},"PeriodicalIF":10.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain adaptive noise reduction with iterative knowledge transfer and style generalization learning\",\"authors\":\"Yufei Tang , Tianling Lyu , Haoyang Jin , Qiang Du , Jiping Wang , Yunxiang Li , Ming Li , Yang Chen , Jian Zheng\",\"doi\":\"10.1016/j.media.2024.103327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Low-dose computed tomography (LDCT) denoising tasks face significant challenges in practical imaging scenarios. Supervised methods encounter difficulties in real-world scenarios as there are no paired data for training. Moreover, when applied to datasets with varying noise patterns, these methods may experience decreased performance owing to the domain gap. Conversely, unsupervised methods do not require paired data and can be directly trained on real-world data. However, they often exhibit inferior performance compared to supervised methods. To address this issue, it is necessary to leverage the strengths of these supervised and unsupervised methods. In this paper, we propose a novel domain adaptive noise reduction framework (DANRF), which integrates both knowledge transfer and style generalization learning to effectively tackle the domain gap problem. Specifically, an iterative knowledge transfer method with knowledge distillation is selected to train the target model using unlabeled target data and a pre-trained source model trained with paired simulation data. Meanwhile, we introduce the mean teacher mechanism to update the source model, enabling it to adapt to the target domain. Furthermore, an iterative style generalization learning process is also designed to enrich the style diversity of the training dataset. We evaluate the performance of our approach through experiments conducted on multi-source datasets. The results demonstrate the feasibility and effectiveness of our proposed DANRF model in multi-source LDCT image processing tasks. Given its hybrid nature, which combines the advantages of supervised and unsupervised learning, and its ability to bridge domain gaps, our approach is well-suited for improving practical low-dose CT imaging in clinical settings. Code for our proposed approach is publicly available at <span><span>https://github.com/tyfeiii/DANRF</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"98 \",\"pages\":\"Article 103327\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841524002524\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524002524","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Domain adaptive noise reduction with iterative knowledge transfer and style generalization learning
Low-dose computed tomography (LDCT) denoising tasks face significant challenges in practical imaging scenarios. Supervised methods encounter difficulties in real-world scenarios as there are no paired data for training. Moreover, when applied to datasets with varying noise patterns, these methods may experience decreased performance owing to the domain gap. Conversely, unsupervised methods do not require paired data and can be directly trained on real-world data. However, they often exhibit inferior performance compared to supervised methods. To address this issue, it is necessary to leverage the strengths of these supervised and unsupervised methods. In this paper, we propose a novel domain adaptive noise reduction framework (DANRF), which integrates both knowledge transfer and style generalization learning to effectively tackle the domain gap problem. Specifically, an iterative knowledge transfer method with knowledge distillation is selected to train the target model using unlabeled target data and a pre-trained source model trained with paired simulation data. Meanwhile, we introduce the mean teacher mechanism to update the source model, enabling it to adapt to the target domain. Furthermore, an iterative style generalization learning process is also designed to enrich the style diversity of the training dataset. We evaluate the performance of our approach through experiments conducted on multi-source datasets. The results demonstrate the feasibility and effectiveness of our proposed DANRF model in multi-source LDCT image processing tasks. Given its hybrid nature, which combines the advantages of supervised and unsupervised learning, and its ability to bridge domain gaps, our approach is well-suited for improving practical low-dose CT imaging in clinical settings. Code for our proposed approach is publicly available at https://github.com/tyfeiii/DANRF.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.