用于分析时间序列的深度学习模型:统计物理学从业人员实用入门

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"用于分析时间序列的深度学习模型:统计物理学从业人员实用入门","authors":"","doi":"10.1016/j.chaos.2024.115359","DOIUrl":null,"url":null,"abstract":"<div><p>Following other fields of science, Deep Learning models are gaining attention within the statistical physics community as a powerful and efficient way for analysing experimental and synthetic time series, and for quantifying properties thereof. Applying such models is nevertheless a path full of pitfalls, not only due to their inherent complexity, but also to a lack of understanding of some of their idiosyncrasies. We here discuss some of these pitfalls in the context of time series classification, covering from the selection of the best model hyperparameters, how the models have to be trained, to the way data have to be pre-processed. While not providing one-fits-all answers, the statistical physics practitioner will here find what questions ought to be posed, and a first guide about how to tackle them.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960077924009111/pdfft?md5=2d2c869e19b00890a513ae3af6205064&pid=1-s2.0-S0960077924009111-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep Learning models for the analysis of time series: A practical introduction for the statistical physics practitioner\",\"authors\":\"\",\"doi\":\"10.1016/j.chaos.2024.115359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Following other fields of science, Deep Learning models are gaining attention within the statistical physics community as a powerful and efficient way for analysing experimental and synthetic time series, and for quantifying properties thereof. Applying such models is nevertheless a path full of pitfalls, not only due to their inherent complexity, but also to a lack of understanding of some of their idiosyncrasies. We here discuss some of these pitfalls in the context of time series classification, covering from the selection of the best model hyperparameters, how the models have to be trained, to the way data have to be pre-processed. While not providing one-fits-all answers, the statistical physics practitioner will here find what questions ought to be posed, and a first guide about how to tackle them.</p></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0960077924009111/pdfft?md5=2d2c869e19b00890a513ae3af6205064&pid=1-s2.0-S0960077924009111-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924009111\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924009111","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

继其他科学领域之后,深度学习模型作为分析实验和合成时间序列以及量化其属性的一种强大而高效的方法,在统计物理学界日益受到关注。然而,应用这类模型是一条充满陷阱的道路,这不仅是由于其固有的复杂性,还由于对其某些特异性缺乏了解。在此,我们将以时间序列分类为背景,讨论其中的一些陷阱,包括最佳模型超参数的选择、模型的训练方式以及数据的预处理方式。虽然不能提供放之四海而皆准的答案,但统计物理学从业者可以在这里找到应该提出哪些问题,以及如何解决这些问题的初步指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning models for the analysis of time series: A practical introduction for the statistical physics practitioner

Following other fields of science, Deep Learning models are gaining attention within the statistical physics community as a powerful and efficient way for analysing experimental and synthetic time series, and for quantifying properties thereof. Applying such models is nevertheless a path full of pitfalls, not only due to their inherent complexity, but also to a lack of understanding of some of their idiosyncrasies. We here discuss some of these pitfalls in the context of time series classification, covering from the selection of the best model hyperparameters, how the models have to be trained, to the way data have to be pre-processed. While not providing one-fits-all answers, the statistical physics practitioner will here find what questions ought to be posed, and a first guide about how to tackle them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信