通过稳定的等结构相干界面实现超强、高塑性和耐软化难熔高熵合金

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"通过稳定的等结构相干界面实现超强、高塑性和耐软化难熔高熵合金","authors":"","doi":"10.1016/j.scriptamat.2024.116337","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional approaches for improving the mechanical performance of alloys entail modifying interfaces, particularly grain boundaries, with elemental segregation or secondary phases. However, these methods face challenges in concurrently improving the strength, plasticity, and high-temperature softening resistance of alloys. Here, we uncovered that stable isostructural coherent interfaces effectively address these challenges. In the model body-centered cubic (BCC) MoTaVW refractory high-entropy alloy (RHEA) fabricated by mechanical alloying and spark plasma sintering, controlling the sintering temperature enhances the preferential segregation of W at interfaces. This results in a distinct BCC W-enriched nanolayer between micrometer-scale grains. This nanolayer facilitates dislocation slip and prevents grain growth, thereby improving both plasticity and resistance to high-temperature softening. Consequently, the MoTaVW RHEA featuring stable isostructural coherent interfaces achieves an ultrahigh yield strength of 1410 MPa and a plasticity of 22 % at ambient temperature. Even at 1200 °C, it maintains a yield strength of 575 MPa under hot compression.</p></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359646224003725/pdfft?md5=80b63750e8fc41974550ca98e6b2e816&pid=1-s2.0-S1359646224003725-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultrastrong, high plasticity, and softening-resistant refractory high-entropy alloy via stable isostructural coherent interfaces\",\"authors\":\"\",\"doi\":\"10.1016/j.scriptamat.2024.116337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional approaches for improving the mechanical performance of alloys entail modifying interfaces, particularly grain boundaries, with elemental segregation or secondary phases. However, these methods face challenges in concurrently improving the strength, plasticity, and high-temperature softening resistance of alloys. Here, we uncovered that stable isostructural coherent interfaces effectively address these challenges. In the model body-centered cubic (BCC) MoTaVW refractory high-entropy alloy (RHEA) fabricated by mechanical alloying and spark plasma sintering, controlling the sintering temperature enhances the preferential segregation of W at interfaces. This results in a distinct BCC W-enriched nanolayer between micrometer-scale grains. This nanolayer facilitates dislocation slip and prevents grain growth, thereby improving both plasticity and resistance to high-temperature softening. Consequently, the MoTaVW RHEA featuring stable isostructural coherent interfaces achieves an ultrahigh yield strength of 1410 MPa and a plasticity of 22 % at ambient temperature. Even at 1200 °C, it maintains a yield strength of 575 MPa under hot compression.</p></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1359646224003725/pdfft?md5=80b63750e8fc41974550ca98e6b2e816&pid=1-s2.0-S1359646224003725-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646224003725\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224003725","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高合金机械性能的传统方法需要通过元素偏析或次相来改变界面,特别是晶界。然而,这些方法在同时提高合金的强度、塑性和耐高温软化性方面面临挑战。在此,我们发现稳定的等结构相干界面可有效解决这些难题。在通过机械合金化和火花等离子烧结制造的模型体心立方(BCC)MoTaVW 难熔高熵合金(RHEA)中,控制烧结温度可增强界面上 W 的优先偏析。这就在微米级晶粒之间形成了一个明显的 BCC W 富集纳米层。这种纳米层有利于位错滑移并防止晶粒长大,从而提高了塑性和抗高温软化的能力。因此,具有稳定同构相干界面的 MoTaVW RHEA 在环境温度下可达到 1410 兆帕的超高屈服强度和 22% 的塑性。即使在 1200 °C 的高温压缩条件下,它也能保持 575 兆帕的屈服强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrastrong, high plasticity, and softening-resistant refractory high-entropy alloy via stable isostructural coherent interfaces

Ultrastrong, high plasticity, and softening-resistant refractory high-entropy alloy via stable isostructural coherent interfaces

Traditional approaches for improving the mechanical performance of alloys entail modifying interfaces, particularly grain boundaries, with elemental segregation or secondary phases. However, these methods face challenges in concurrently improving the strength, plasticity, and high-temperature softening resistance of alloys. Here, we uncovered that stable isostructural coherent interfaces effectively address these challenges. In the model body-centered cubic (BCC) MoTaVW refractory high-entropy alloy (RHEA) fabricated by mechanical alloying and spark plasma sintering, controlling the sintering temperature enhances the preferential segregation of W at interfaces. This results in a distinct BCC W-enriched nanolayer between micrometer-scale grains. This nanolayer facilitates dislocation slip and prevents grain growth, thereby improving both plasticity and resistance to high-temperature softening. Consequently, the MoTaVW RHEA featuring stable isostructural coherent interfaces achieves an ultrahigh yield strength of 1410 MPa and a plasticity of 22 % at ambient temperature. Even at 1200 °C, it maintains a yield strength of 575 MPa under hot compression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信