{"title":"在设计打入岩基中间岩土材料的桩时明确考虑岩土材料的不确定性","authors":"","doi":"10.1016/j.trgeo.2024.101358","DOIUrl":null,"url":null,"abstract":"<div><p>The study presents a method for estimating the end bearing of piles driven into rock-based intermediate geomaterials (IGMs). Existing design methods, rooted in soil mechanics, often fall short when applied to IGMs. Moreover, the geomaterial (geological and ground properties) uncertainties are neglected and the piles are designed based on subsurface information from distant boreholes. To address this gap, the study introduces an approach that explicitly considers geomaterial uncertainties by combining empirical models and geostatistical simulation to predict end bearing. Using data from 87 piles driven into various rock-based IGMs with dynamic load testing as the construction control technique, this study introduces the Proposed Design Method (PDM) for the prediction of end bearing. PDM is compared to the Current Design Method (CDM), which is based on traditional soil-mechanics methods. Predictions from these methods are subsequently evaluated against the measured end bearings. The results demonstrate that while the PDM yields comparable predictions to the CDM, it offers a more robust consideration of geomaterial uncertainties. The PDM leads to an approximate 13.60% to 19.35% increase in uncertainties compared to CDM across various IGMs. These findings advance the understanding of pile behavior in the presence of geomaterial uncertainties and inherent variability.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit consideration of geomaterial uncertainties in the load resistance factor design of piles driven into rock-based intermediate geomaterials\",\"authors\":\"\",\"doi\":\"10.1016/j.trgeo.2024.101358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study presents a method for estimating the end bearing of piles driven into rock-based intermediate geomaterials (IGMs). Existing design methods, rooted in soil mechanics, often fall short when applied to IGMs. Moreover, the geomaterial (geological and ground properties) uncertainties are neglected and the piles are designed based on subsurface information from distant boreholes. To address this gap, the study introduces an approach that explicitly considers geomaterial uncertainties by combining empirical models and geostatistical simulation to predict end bearing. Using data from 87 piles driven into various rock-based IGMs with dynamic load testing as the construction control technique, this study introduces the Proposed Design Method (PDM) for the prediction of end bearing. PDM is compared to the Current Design Method (CDM), which is based on traditional soil-mechanics methods. Predictions from these methods are subsequently evaluated against the measured end bearings. The results demonstrate that while the PDM yields comparable predictions to the CDM, it offers a more robust consideration of geomaterial uncertainties. The PDM leads to an approximate 13.60% to 19.35% increase in uncertainties compared to CDM across various IGMs. These findings advance the understanding of pile behavior in the presence of geomaterial uncertainties and inherent variability.</p></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221439122400179X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221439122400179X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Explicit consideration of geomaterial uncertainties in the load resistance factor design of piles driven into rock-based intermediate geomaterials
The study presents a method for estimating the end bearing of piles driven into rock-based intermediate geomaterials (IGMs). Existing design methods, rooted in soil mechanics, often fall short when applied to IGMs. Moreover, the geomaterial (geological and ground properties) uncertainties are neglected and the piles are designed based on subsurface information from distant boreholes. To address this gap, the study introduces an approach that explicitly considers geomaterial uncertainties by combining empirical models and geostatistical simulation to predict end bearing. Using data from 87 piles driven into various rock-based IGMs with dynamic load testing as the construction control technique, this study introduces the Proposed Design Method (PDM) for the prediction of end bearing. PDM is compared to the Current Design Method (CDM), which is based on traditional soil-mechanics methods. Predictions from these methods are subsequently evaluated against the measured end bearings. The results demonstrate that while the PDM yields comparable predictions to the CDM, it offers a more robust consideration of geomaterial uncertainties. The PDM leads to an approximate 13.60% to 19.35% increase in uncertainties compared to CDM across various IGMs. These findings advance the understanding of pile behavior in the presence of geomaterial uncertainties and inherent variability.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.