{"title":"基于两个临界滑移面的平移作用下配重挡土墙的静力和地震活动土压力计算方法","authors":"","doi":"10.1016/j.trgeo.2024.101349","DOIUrl":null,"url":null,"abstract":"<div><p>The counterweight retaining wall with polyline wall back is a kind of gravity walls, which can be alternatively used in high embankments. To completely analyze active earth pressure on the polyline back under the wall translation mode, a comprehensive method is proposed based on two planar slip surfaces in the retained soil, an inclined slice method within the frame of limit equilibrium, and the pseudo-static approach. Meanwhile, the two critical slip surfaces include the global and local ones in the soils behind the whole wall and only the upper wall, respectively; and mobilized shear strength coefficients on interslice surfaces are introduced to fully consider the interslice shear forces. Some examples show that the proposed resultant forces on the whole wall are close to the experimental and numerical results generally within 10% error. The dip angle of backfill surface has a significant effect on the two slip surfaces, and the inclination of the lower back mostly influences the global slip surface. The unloading effect of the platform on the lower earth pressure becomes obvious as the upper wall lengthens under a constant height of the whole wall. The magnitude and profile of the seismic earth pressure on the polyline back are greatly influenced by the seismic coefficients.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation method for static and seismic active earth pressure on counterweight retaining walls under translation based on two critical slip surfaces\",\"authors\":\"\",\"doi\":\"10.1016/j.trgeo.2024.101349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The counterweight retaining wall with polyline wall back is a kind of gravity walls, which can be alternatively used in high embankments. To completely analyze active earth pressure on the polyline back under the wall translation mode, a comprehensive method is proposed based on two planar slip surfaces in the retained soil, an inclined slice method within the frame of limit equilibrium, and the pseudo-static approach. Meanwhile, the two critical slip surfaces include the global and local ones in the soils behind the whole wall and only the upper wall, respectively; and mobilized shear strength coefficients on interslice surfaces are introduced to fully consider the interslice shear forces. Some examples show that the proposed resultant forces on the whole wall are close to the experimental and numerical results generally within 10% error. The dip angle of backfill surface has a significant effect on the two slip surfaces, and the inclination of the lower back mostly influences the global slip surface. The unloading effect of the platform on the lower earth pressure becomes obvious as the upper wall lengthens under a constant height of the whole wall. The magnitude and profile of the seismic earth pressure on the polyline back are greatly influenced by the seismic coefficients.</p></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391224001703\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001703","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Calculation method for static and seismic active earth pressure on counterweight retaining walls under translation based on two critical slip surfaces
The counterweight retaining wall with polyline wall back is a kind of gravity walls, which can be alternatively used in high embankments. To completely analyze active earth pressure on the polyline back under the wall translation mode, a comprehensive method is proposed based on two planar slip surfaces in the retained soil, an inclined slice method within the frame of limit equilibrium, and the pseudo-static approach. Meanwhile, the two critical slip surfaces include the global and local ones in the soils behind the whole wall and only the upper wall, respectively; and mobilized shear strength coefficients on interslice surfaces are introduced to fully consider the interslice shear forces. Some examples show that the proposed resultant forces on the whole wall are close to the experimental and numerical results generally within 10% error. The dip angle of backfill surface has a significant effect on the two slip surfaces, and the inclination of the lower back mostly influences the global slip surface. The unloading effect of the platform on the lower earth pressure becomes obvious as the upper wall lengthens under a constant height of the whole wall. The magnitude and profile of the seismic earth pressure on the polyline back are greatly influenced by the seismic coefficients.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.