基于机器学习的输入增强型库普曼建模和非线性过程的预测控制

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhaoyang Li , Minghao Han , Dat-Nguyen Vo , Xunyuan Yin
{"title":"基于机器学习的输入增强型库普曼建模和非线性过程的预测控制","authors":"Zhaoyang Li ,&nbsp;Minghao Han ,&nbsp;Dat-Nguyen Vo ,&nbsp;Xunyuan Yin","doi":"10.1016/j.compchemeng.2024.108854","DOIUrl":null,"url":null,"abstract":"<div><p>Koopman-based modeling and model predictive control have been a promising alternative for optimal control of nonlinear processes. Good Koopman modeling performance significantly depends on an appropriate nonlinear mapping from the original state-space to a lifted state space. In this work, we propose an input-augmented Koopman modeling and model predictive control approach. Both the states and the known inputs are lifted using two deep neural networks (DNNs), and a Koopman model with nonlinearity in inputs is trained within the higher-dimensional state space. A Koopman-based model predictive control problem is formulated. To bypass non-convex optimization induced by the nonlinearity in the Koopman model, we further present an iterative implementation algorithm, which approximates the optimal control input via solving a convex optimization problem iteratively. The proposed method is applied to a chemical process and a biological water treatment process via simulations. The efficacy and advantages of the proposed modeling and control approach are demonstrated.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"191 ","pages":"Article 108854"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based input-augmented Koopman modeling and predictive control of nonlinear processes\",\"authors\":\"Zhaoyang Li ,&nbsp;Minghao Han ,&nbsp;Dat-Nguyen Vo ,&nbsp;Xunyuan Yin\",\"doi\":\"10.1016/j.compchemeng.2024.108854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Koopman-based modeling and model predictive control have been a promising alternative for optimal control of nonlinear processes. Good Koopman modeling performance significantly depends on an appropriate nonlinear mapping from the original state-space to a lifted state space. In this work, we propose an input-augmented Koopman modeling and model predictive control approach. Both the states and the known inputs are lifted using two deep neural networks (DNNs), and a Koopman model with nonlinearity in inputs is trained within the higher-dimensional state space. A Koopman-based model predictive control problem is formulated. To bypass non-convex optimization induced by the nonlinearity in the Koopman model, we further present an iterative implementation algorithm, which approximates the optimal control input via solving a convex optimization problem iteratively. The proposed method is applied to a chemical process and a biological water treatment process via simulations. The efficacy and advantages of the proposed modeling and control approach are demonstrated.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"191 \",\"pages\":\"Article 108854\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002722\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002722","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于 Koopman 的建模和模型预测控制一直是非线性过程优化控制的一个有前途的选择。良好的 Koopman 建模性能在很大程度上取决于从原始状态空间到提升状态空间的适当非线性映射。在这项工作中,我们提出了一种输入增强库普曼建模和模型预测控制方法。使用两个深度神经网络(DNN)对状态和已知输入进行提升,并在高维状态空间内训练输入非线性的 Koopman 模型。由此提出了一个基于 Koopman 的模型预测控制问题。为了绕过 Koopman 模型中的非线性所引起的非凸优化,我们进一步提出了一种迭代实现算法,该算法通过迭代求解凸优化问题来逼近最优控制输入。我们通过模拟将所提出的方法应用于一个化学过程和一个生物水处理过程。演示了所提出的建模和控制方法的功效和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based input-augmented Koopman modeling and predictive control of nonlinear processes

Koopman-based modeling and model predictive control have been a promising alternative for optimal control of nonlinear processes. Good Koopman modeling performance significantly depends on an appropriate nonlinear mapping from the original state-space to a lifted state space. In this work, we propose an input-augmented Koopman modeling and model predictive control approach. Both the states and the known inputs are lifted using two deep neural networks (DNNs), and a Koopman model with nonlinearity in inputs is trained within the higher-dimensional state space. A Koopman-based model predictive control problem is formulated. To bypass non-convex optimization induced by the nonlinearity in the Koopman model, we further present an iterative implementation algorithm, which approximates the optimal control input via solving a convex optimization problem iteratively. The proposed method is applied to a chemical process and a biological water treatment process via simulations. The efficacy and advantages of the proposed modeling and control approach are demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信