{"title":"加的斯湾北缘的上升流过程变化和水循环","authors":"","doi":"10.1016/j.csr.2024.105310","DOIUrl":null,"url":null,"abstract":"<div><p>The present study investigates the contributions of upwelling mechanisms (coastal upwelling from boundary divergence and Ekman pumping from spatially variable wind) at the northern margin of the Gulf of Cadiz (NMGoC) based on high-resolution wind. The effects of the spatiotemporal upwelling mechanisms variability are then explored using current observations along with sea surface temperature and sea level anomaly. Upwelling favourable conditions occur throughout the year along the NMGoC, with the strongest intensity near Cape São Vicente due to a persistent positive wind stress curl. In winter, the surface water divergence is restricted to the coastal boundary due to strong coastal upwelling events that result in a cross-shore sea-level gradient close to the coast. Towards the summer, the gradient increases and extends further offshore (over the slope) at the western region due to the intensification of the Ekman pumping. Therefore, the seasonal and spatial variability of coastal upwelling and Ekman pumping contributes significantly to the offshore position of the geostrophic Gulf of Cadiz Current over the western shelf slope. Furthermore, a permanent sea level depression corresponds to the location of the strongest Ekman pumping, near Cape São Vicente. The dynamic adjustment of this feature may drive the cyclonic cell and alongshore poleward currents often observed in the area.</p></div>","PeriodicalId":50618,"journal":{"name":"Continental Shelf Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0278434324001407/pdfft?md5=0a56a13336abbc5b4cd13c91f8d1d149&pid=1-s2.0-S0278434324001407-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Upwelling processes variability and water circulation along the northern margin of the Gulf of Cadiz\",\"authors\":\"\",\"doi\":\"10.1016/j.csr.2024.105310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study investigates the contributions of upwelling mechanisms (coastal upwelling from boundary divergence and Ekman pumping from spatially variable wind) at the northern margin of the Gulf of Cadiz (NMGoC) based on high-resolution wind. The effects of the spatiotemporal upwelling mechanisms variability are then explored using current observations along with sea surface temperature and sea level anomaly. Upwelling favourable conditions occur throughout the year along the NMGoC, with the strongest intensity near Cape São Vicente due to a persistent positive wind stress curl. In winter, the surface water divergence is restricted to the coastal boundary due to strong coastal upwelling events that result in a cross-shore sea-level gradient close to the coast. Towards the summer, the gradient increases and extends further offshore (over the slope) at the western region due to the intensification of the Ekman pumping. Therefore, the seasonal and spatial variability of coastal upwelling and Ekman pumping contributes significantly to the offshore position of the geostrophic Gulf of Cadiz Current over the western shelf slope. Furthermore, a permanent sea level depression corresponds to the location of the strongest Ekman pumping, near Cape São Vicente. The dynamic adjustment of this feature may drive the cyclonic cell and alongshore poleward currents often observed in the area.</p></div>\",\"PeriodicalId\":50618,\"journal\":{\"name\":\"Continental Shelf Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0278434324001407/pdfft?md5=0a56a13336abbc5b4cd13c91f8d1d149&pid=1-s2.0-S0278434324001407-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continental Shelf Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278434324001407\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continental Shelf Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278434324001407","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Upwelling processes variability and water circulation along the northern margin of the Gulf of Cadiz
The present study investigates the contributions of upwelling mechanisms (coastal upwelling from boundary divergence and Ekman pumping from spatially variable wind) at the northern margin of the Gulf of Cadiz (NMGoC) based on high-resolution wind. The effects of the spatiotemporal upwelling mechanisms variability are then explored using current observations along with sea surface temperature and sea level anomaly. Upwelling favourable conditions occur throughout the year along the NMGoC, with the strongest intensity near Cape São Vicente due to a persistent positive wind stress curl. In winter, the surface water divergence is restricted to the coastal boundary due to strong coastal upwelling events that result in a cross-shore sea-level gradient close to the coast. Towards the summer, the gradient increases and extends further offshore (over the slope) at the western region due to the intensification of the Ekman pumping. Therefore, the seasonal and spatial variability of coastal upwelling and Ekman pumping contributes significantly to the offshore position of the geostrophic Gulf of Cadiz Current over the western shelf slope. Furthermore, a permanent sea level depression corresponds to the location of the strongest Ekman pumping, near Cape São Vicente. The dynamic adjustment of this feature may drive the cyclonic cell and alongshore poleward currents often observed in the area.
期刊介绍:
Continental Shelf Research publishes articles dealing with the biological, chemical, geological and physical oceanography of the shallow marine environment, from coastal and estuarine waters out to the shelf break. The continental shelf is a critical environment within the land-ocean continuum, and many processes, functions and problems in the continental shelf are driven by terrestrial inputs transported through the rivers and estuaries to the coastal and continental shelf areas. Manuscripts that deal with these topics must make a clear link to the continental shelf. Examples of research areas include:
Physical sedimentology and geomorphology
Geochemistry of the coastal ocean (inorganic and organic)
Marine environment and anthropogenic effects
Interaction of physical dynamics with natural and manmade shoreline features
Benthic, phytoplankton and zooplankton ecology
Coastal water and sediment quality, and ecosystem health
Benthic-pelagic coupling (physical and biogeochemical)
Interactions between physical dynamics (waves, currents, mixing, etc.) and biogeochemical cycles
Estuarine, coastal and shelf sea modelling and process studies.