{"title":"用于图像分类的新型多层判别字典学习方法","authors":"Dandan Zhao, Peng Zhang, Hongpeng Yin, Jiaxin Guo","doi":"10.1016/j.sigpro.2024.109670","DOIUrl":null,"url":null,"abstract":"<div><p>Discriminative dictionary learning (DDL) has been confirmed to be effective for image classification. However, existing DDL approaches often fail to extract deep hierarchical information due to the single-layer dictionary learning framework. Moreover, they overlook the atoms-label information in the dictionary, leading to reduced feature distinctiveness and lower classification accuracy. To overcome the above problem, a novel DDL method, called the Multi-layer local constraint and label embedding dictionary learning (M-LCLEDL), is proposed. Specifically, the novel multi-layer DDL framework, which is formed by stacking the DL process one by one, is designed to learn the deep hierarchical and nonlinear features. The layer-by-layer stacking of the DL process in the multi-layer DDL framework allows for the elimination of redundant and interfering features. This step-by-step elimination process enhances the stability and robustness of the framework. Additionally, to leverage the label information carried by the labeled training samples, atoms with label embedding and locality structure are introduced. The proposed approach includes a fast iteration strategy for efficient optimization. Experimental results demonstrate that the approach is relatively insensitive to dictionary size, achieving promising performance and greater stability compared to most DDL-based image classification approaches.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"226 ","pages":"Article 109670"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165168424002901/pdfft?md5=18fad0bdee254fe89fd7c9274842c7f1&pid=1-s2.0-S0165168424002901-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel multi-layer discriminative dictionary learning approach for image classification\",\"authors\":\"Dandan Zhao, Peng Zhang, Hongpeng Yin, Jiaxin Guo\",\"doi\":\"10.1016/j.sigpro.2024.109670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Discriminative dictionary learning (DDL) has been confirmed to be effective for image classification. However, existing DDL approaches often fail to extract deep hierarchical information due to the single-layer dictionary learning framework. Moreover, they overlook the atoms-label information in the dictionary, leading to reduced feature distinctiveness and lower classification accuracy. To overcome the above problem, a novel DDL method, called the Multi-layer local constraint and label embedding dictionary learning (M-LCLEDL), is proposed. Specifically, the novel multi-layer DDL framework, which is formed by stacking the DL process one by one, is designed to learn the deep hierarchical and nonlinear features. The layer-by-layer stacking of the DL process in the multi-layer DDL framework allows for the elimination of redundant and interfering features. This step-by-step elimination process enhances the stability and robustness of the framework. Additionally, to leverage the label information carried by the labeled training samples, atoms with label embedding and locality structure are introduced. The proposed approach includes a fast iteration strategy for efficient optimization. Experimental results demonstrate that the approach is relatively insensitive to dictionary size, achieving promising performance and greater stability compared to most DDL-based image classification approaches.</p></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"226 \",\"pages\":\"Article 109670\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165168424002901/pdfft?md5=18fad0bdee254fe89fd7c9274842c7f1&pid=1-s2.0-S0165168424002901-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424002901\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424002901","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A novel multi-layer discriminative dictionary learning approach for image classification
Discriminative dictionary learning (DDL) has been confirmed to be effective for image classification. However, existing DDL approaches often fail to extract deep hierarchical information due to the single-layer dictionary learning framework. Moreover, they overlook the atoms-label information in the dictionary, leading to reduced feature distinctiveness and lower classification accuracy. To overcome the above problem, a novel DDL method, called the Multi-layer local constraint and label embedding dictionary learning (M-LCLEDL), is proposed. Specifically, the novel multi-layer DDL framework, which is formed by stacking the DL process one by one, is designed to learn the deep hierarchical and nonlinear features. The layer-by-layer stacking of the DL process in the multi-layer DDL framework allows for the elimination of redundant and interfering features. This step-by-step elimination process enhances the stability and robustness of the framework. Additionally, to leverage the label information carried by the labeled training samples, atoms with label embedding and locality structure are introduced. The proposed approach includes a fast iteration strategy for efficient optimization. Experimental results demonstrate that the approach is relatively insensitive to dictionary size, achieving promising performance and greater stability compared to most DDL-based image classification approaches.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.