Yiru Huang, Lei Zhang*, Hangyuan Deng and Junfei Mao,
{"title":"NJmat:加速材料设计的数据驱动型机器学习界面","authors":"Yiru Huang, Lei Zhang*, Hangyuan Deng and Junfei Mao, ","doi":"10.1021/acs.jcim.4c0049310.1021/acs.jcim.4c00493","DOIUrl":null,"url":null,"abstract":"<p >Machine learning techniques have significantly transformed the way materials scientists conduct research. However, the widespread deployment of machine learning software in daily experimental and simulation research for materials and chemical design has been limited. This is partly due to the substantial time investment and learning curve associated with mastering the necessary codes and computational environments. In this paper, we introduce a user-friendly, data-driven machine learning interface featuring multiple “button-clicking” functionalities to streamline the design of materials and chemicals. This interface automates the processes of transforming materials and molecules, performing feature selection, constructing machine learning models, making virtual predictions, and visualizing results. Such automation accelerates materials prediction and analysis in the inverse design process, aligning with the time criteria outlined by the Materials Genome Initiative. With simple button clicks, researchers can build machine learning models and predict new materials once they have gathered experimental or simulation data. Beyond the ease of use, NJmat offers three additional features for data-driven materials design: (1) automatic feature generation for both inorganic materials (from chemical formulas) and organic molecules (from SMILES), (2) automatic generation of Shapley plots, and (3) automatic construction of “white-box” genetic models and decision trees to provide scientific insights. We present case studies on surface design for halide perovskite materials encompassing both inorganic and organic species. These case studies illustrate general machine learning models for virtual predictions as well as the automatic featurization and Shapley/genetic model construction capabilities. We anticipate that this software tool will expedite materials and molecular design within the scope of the Materials Genome Initiative, particularly benefiting experimentalists.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 16","pages":"6477–6491 6477–6491"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NJmat: Data-Driven Machine Learning Interface to Accelerate Material Design\",\"authors\":\"Yiru Huang, Lei Zhang*, Hangyuan Deng and Junfei Mao, \",\"doi\":\"10.1021/acs.jcim.4c0049310.1021/acs.jcim.4c00493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Machine learning techniques have significantly transformed the way materials scientists conduct research. However, the widespread deployment of machine learning software in daily experimental and simulation research for materials and chemical design has been limited. This is partly due to the substantial time investment and learning curve associated with mastering the necessary codes and computational environments. In this paper, we introduce a user-friendly, data-driven machine learning interface featuring multiple “button-clicking” functionalities to streamline the design of materials and chemicals. This interface automates the processes of transforming materials and molecules, performing feature selection, constructing machine learning models, making virtual predictions, and visualizing results. Such automation accelerates materials prediction and analysis in the inverse design process, aligning with the time criteria outlined by the Materials Genome Initiative. With simple button clicks, researchers can build machine learning models and predict new materials once they have gathered experimental or simulation data. Beyond the ease of use, NJmat offers three additional features for data-driven materials design: (1) automatic feature generation for both inorganic materials (from chemical formulas) and organic molecules (from SMILES), (2) automatic generation of Shapley plots, and (3) automatic construction of “white-box” genetic models and decision trees to provide scientific insights. We present case studies on surface design for halide perovskite materials encompassing both inorganic and organic species. These case studies illustrate general machine learning models for virtual predictions as well as the automatic featurization and Shapley/genetic model construction capabilities. We anticipate that this software tool will expedite materials and molecular design within the scope of the Materials Genome Initiative, particularly benefiting experimentalists.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"64 16\",\"pages\":\"6477–6491 6477–6491\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00493\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00493","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
NJmat: Data-Driven Machine Learning Interface to Accelerate Material Design
Machine learning techniques have significantly transformed the way materials scientists conduct research. However, the widespread deployment of machine learning software in daily experimental and simulation research for materials and chemical design has been limited. This is partly due to the substantial time investment and learning curve associated with mastering the necessary codes and computational environments. In this paper, we introduce a user-friendly, data-driven machine learning interface featuring multiple “button-clicking” functionalities to streamline the design of materials and chemicals. This interface automates the processes of transforming materials and molecules, performing feature selection, constructing machine learning models, making virtual predictions, and visualizing results. Such automation accelerates materials prediction and analysis in the inverse design process, aligning with the time criteria outlined by the Materials Genome Initiative. With simple button clicks, researchers can build machine learning models and predict new materials once they have gathered experimental or simulation data. Beyond the ease of use, NJmat offers three additional features for data-driven materials design: (1) automatic feature generation for both inorganic materials (from chemical formulas) and organic molecules (from SMILES), (2) automatic generation of Shapley plots, and (3) automatic construction of “white-box” genetic models and decision trees to provide scientific insights. We present case studies on surface design for halide perovskite materials encompassing both inorganic and organic species. These case studies illustrate general machine learning models for virtual predictions as well as the automatic featurization and Shapley/genetic model construction capabilities. We anticipate that this software tool will expedite materials and molecular design within the scope of the Materials Genome Initiative, particularly benefiting experimentalists.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.