从超声图像预测 HER2 阳性乳腺癌的病理特征:一种深度集合方法

Zhi-Hui Chen, Hai-Ling Zha, Qing Yao, Wen-Bo Zhang, Guang-Quan Zhou, Cui-Ying Li
{"title":"从超声图像预测 HER2 阳性乳腺癌的病理特征:一种深度集合方法","authors":"Zhi-Hui Chen, Hai-Ling Zha, Qing Yao, Wen-Bo Zhang, Guang-Quan Zhou, Cui-Ying Li","doi":"10.1007/s10278-024-01229-0","DOIUrl":null,"url":null,"abstract":"<p><p>The objective is to evaluate the feasibility of utilizing ultrasound images in identifying critical prognostic biomarkers for HER2-positive breast cancer (HER2 + BC). This study enrolled 512 female patients diagnosed with HER2-positive breast cancer through pathological validation at our institution from January 2016 to December 2021. Five distinct deep convolutional neural networks (DCNNs) and a deep ensemble (DE) approach were trained to classify axillary lymph node involvement (ALNM), lymphovascular invasion (LVI), and histological grade (HG). The efficacy of the models was evaluated based on accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), receiver operating characteristic (ROC) curves, areas under the ROC curve (AUCs), and heat maps. DeLong test was applied to compare differences in AUC among different models. The deep ensemble approach, as the most effective model, demonstrated AUCs and accuracy of 0.869 (95% CI: 0.802-0.936) and 69.7% in LVI, 0.973 (95% CI: 0.949-0.998) and 73.8% in HG, thus providing superior classification performance in the context of imbalanced data (p < 0.05 by the DeLong test). On ALNM, AUC and accuracy were 0.780 (95% CI: 0.688-0.873) and 77.5%, which were comparable to other single models. The pretreatment US-based DE model could hold promise as a clinical guidance for predicting pathological characteristics of patients with HER2-positive breast cancer, thereby providing benefit of facilitating timely adjustments in treatment strategies.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Pathological Characteristics of HER2-Positive Breast Cancer from Ultrasound Images: a Deep Ensemble Approach.\",\"authors\":\"Zhi-Hui Chen, Hai-Ling Zha, Qing Yao, Wen-Bo Zhang, Guang-Quan Zhou, Cui-Ying Li\",\"doi\":\"10.1007/s10278-024-01229-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective is to evaluate the feasibility of utilizing ultrasound images in identifying critical prognostic biomarkers for HER2-positive breast cancer (HER2 + BC). This study enrolled 512 female patients diagnosed with HER2-positive breast cancer through pathological validation at our institution from January 2016 to December 2021. Five distinct deep convolutional neural networks (DCNNs) and a deep ensemble (DE) approach were trained to classify axillary lymph node involvement (ALNM), lymphovascular invasion (LVI), and histological grade (HG). The efficacy of the models was evaluated based on accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), receiver operating characteristic (ROC) curves, areas under the ROC curve (AUCs), and heat maps. DeLong test was applied to compare differences in AUC among different models. The deep ensemble approach, as the most effective model, demonstrated AUCs and accuracy of 0.869 (95% CI: 0.802-0.936) and 69.7% in LVI, 0.973 (95% CI: 0.949-0.998) and 73.8% in HG, thus providing superior classification performance in the context of imbalanced data (p < 0.05 by the DeLong test). On ALNM, AUC and accuracy were 0.780 (95% CI: 0.688-0.873) and 77.5%, which were comparable to other single models. The pretreatment US-based DE model could hold promise as a clinical guidance for predicting pathological characteristics of patients with HER2-positive breast cancer, thereby providing benefit of facilitating timely adjustments in treatment strategies.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01229-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01229-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的是评估利用超声图像确定 HER2 阳性乳腺癌(HER2 + BC)关键预后生物标志物的可行性。本研究在2016年1月至2021年12月期间,在我院招募了512名通过病理验证确诊为HER2阳性乳腺癌的女性患者。我们训练了五个不同的深度卷积神经网络(DCNN)和一个深度集合(DE)方法来对腋窝淋巴结受累(ALNM)、淋巴管侵犯(LVI)和组织学分级(HG)进行分类。根据准确性、灵敏度、特异性、阳性预测值(PPV)、阴性预测值(NPV)、接收者操作特征曲线(ROC)、ROC 曲线下面积(AUC)和热图对模型的功效进行了评估。DeLong 检验用于比较不同模型之间 AUC 的差异。作为最有效的模型,深度集合方法在 LVI 中的 AUCs 和准确率分别为 0.869(95% CI:0.802-0.936)和 69.7%,在 HG 中分别为 0.973(95% CI:0.949-0.998)和 73.8%,因此在不平衡数据的情况下提供了更优越的分类性能(p<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting Pathological Characteristics of HER2-Positive Breast Cancer from Ultrasound Images: a Deep Ensemble Approach.

Predicting Pathological Characteristics of HER2-Positive Breast Cancer from Ultrasound Images: a Deep Ensemble Approach.

The objective is to evaluate the feasibility of utilizing ultrasound images in identifying critical prognostic biomarkers for HER2-positive breast cancer (HER2 + BC). This study enrolled 512 female patients diagnosed with HER2-positive breast cancer through pathological validation at our institution from January 2016 to December 2021. Five distinct deep convolutional neural networks (DCNNs) and a deep ensemble (DE) approach were trained to classify axillary lymph node involvement (ALNM), lymphovascular invasion (LVI), and histological grade (HG). The efficacy of the models was evaluated based on accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), receiver operating characteristic (ROC) curves, areas under the ROC curve (AUCs), and heat maps. DeLong test was applied to compare differences in AUC among different models. The deep ensemble approach, as the most effective model, demonstrated AUCs and accuracy of 0.869 (95% CI: 0.802-0.936) and 69.7% in LVI, 0.973 (95% CI: 0.949-0.998) and 73.8% in HG, thus providing superior classification performance in the context of imbalanced data (p < 0.05 by the DeLong test). On ALNM, AUC and accuracy were 0.780 (95% CI: 0.688-0.873) and 77.5%, which were comparable to other single models. The pretreatment US-based DE model could hold promise as a clinical guidance for predicting pathological characteristics of patients with HER2-positive breast cancer, thereby providing benefit of facilitating timely adjustments in treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信