{"title":"L3MBTL2 通过沉默 NRIP3 和 BRME1 基因维持 MYCN 扩增的神经母细胞瘤细胞增殖。","authors":"Ryu Okada, Hisanori Takenobu, Shunpei Satoh, Ryuichi P. Sugino, Ritsuko Onuki, Masayuki Haruta, Kyosuke Mukae, Atsuko Nakazawa, Jesmin Akter, Miki Ohira, Takehiko Kamijo","doi":"10.1111/gtc.13148","DOIUrl":null,"url":null,"abstract":"<p>Epigenetic alterations critically affect tumor development. Polycomb-group complexes constitute an evolutionarily conserved epigenetic machinery that regulates stem cell fate and development. They are implicated in tumorigenesis, primarily via histone modification. Polycomb repressive complex 1 (PRC1) complexes 1–6 (PRC1.1–6) mediate the ubiquitination of histone H2A on lysine 119 (H2AK119ub). Here, we studied the functional roles of a PRC1.6 molecule, L3MBTL2, in neuroblastoma (NB) cells. <i>L3MBTL2</i>-knockout and knockdown revealed that L3MBTL2 depletion suppressed NB cell proliferation via cell-cycle arrest and gamma-H2A.X upregulation. <i>L3MBTL2-</i>knockout profoundly suppressed xenograft tumor formation. Transcriptome analysis revealed suppressed cell-cycle-related and activated differentiation-related pathways. <i>Break repair meiotic recombinase recruitment factor 1</i> (<i>BRME1</i>) and <i>nuclear receptor interacting protein 3</i> (<i>NRIP3</i>) were notably de-repressed by <i>L3MBTL2</i>-knockout. The deletion of <i>L3MBTL2</i> reduced enrichment of H2AK119ub and PCGF6 at transcriptional start site proximal regions of the targets. Add-back studies unveiled the importance of L3MBTL2-BRME1 and -NRIP3 axes for NB cell proliferation. We further manifested the association of MYCN with de-repression of <i>NRIP3</i> in an <i>L3MBTL2</i>-deficient context. Therefore, this study first revealed the significance of <i>L3MBTL2-</i>mediated gene silencing in MYCN-amplified NB cells.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L3MBTL2 maintains MYCN-amplified neuroblastoma cell proliferation through silencing NRIP3 and BRME1 genes\",\"authors\":\"Ryu Okada, Hisanori Takenobu, Shunpei Satoh, Ryuichi P. Sugino, Ritsuko Onuki, Masayuki Haruta, Kyosuke Mukae, Atsuko Nakazawa, Jesmin Akter, Miki Ohira, Takehiko Kamijo\",\"doi\":\"10.1111/gtc.13148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Epigenetic alterations critically affect tumor development. Polycomb-group complexes constitute an evolutionarily conserved epigenetic machinery that regulates stem cell fate and development. They are implicated in tumorigenesis, primarily via histone modification. Polycomb repressive complex 1 (PRC1) complexes 1–6 (PRC1.1–6) mediate the ubiquitination of histone H2A on lysine 119 (H2AK119ub). Here, we studied the functional roles of a PRC1.6 molecule, L3MBTL2, in neuroblastoma (NB) cells. <i>L3MBTL2</i>-knockout and knockdown revealed that L3MBTL2 depletion suppressed NB cell proliferation via cell-cycle arrest and gamma-H2A.X upregulation. <i>L3MBTL2-</i>knockout profoundly suppressed xenograft tumor formation. Transcriptome analysis revealed suppressed cell-cycle-related and activated differentiation-related pathways. <i>Break repair meiotic recombinase recruitment factor 1</i> (<i>BRME1</i>) and <i>nuclear receptor interacting protein 3</i> (<i>NRIP3</i>) were notably de-repressed by <i>L3MBTL2</i>-knockout. The deletion of <i>L3MBTL2</i> reduced enrichment of H2AK119ub and PCGF6 at transcriptional start site proximal regions of the targets. Add-back studies unveiled the importance of L3MBTL2-BRME1 and -NRIP3 axes for NB cell proliferation. We further manifested the association of MYCN with de-repression of <i>NRIP3</i> in an <i>L3MBTL2</i>-deficient context. Therefore, this study first revealed the significance of <i>L3MBTL2-</i>mediated gene silencing in MYCN-amplified NB cells.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13148\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13148","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
L3MBTL2 maintains MYCN-amplified neuroblastoma cell proliferation through silencing NRIP3 and BRME1 genes
Epigenetic alterations critically affect tumor development. Polycomb-group complexes constitute an evolutionarily conserved epigenetic machinery that regulates stem cell fate and development. They are implicated in tumorigenesis, primarily via histone modification. Polycomb repressive complex 1 (PRC1) complexes 1–6 (PRC1.1–6) mediate the ubiquitination of histone H2A on lysine 119 (H2AK119ub). Here, we studied the functional roles of a PRC1.6 molecule, L3MBTL2, in neuroblastoma (NB) cells. L3MBTL2-knockout and knockdown revealed that L3MBTL2 depletion suppressed NB cell proliferation via cell-cycle arrest and gamma-H2A.X upregulation. L3MBTL2-knockout profoundly suppressed xenograft tumor formation. Transcriptome analysis revealed suppressed cell-cycle-related and activated differentiation-related pathways. Break repair meiotic recombinase recruitment factor 1 (BRME1) and nuclear receptor interacting protein 3 (NRIP3) were notably de-repressed by L3MBTL2-knockout. The deletion of L3MBTL2 reduced enrichment of H2AK119ub and PCGF6 at transcriptional start site proximal regions of the targets. Add-back studies unveiled the importance of L3MBTL2-BRME1 and -NRIP3 axes for NB cell proliferation. We further manifested the association of MYCN with de-repression of NRIP3 in an L3MBTL2-deficient context. Therefore, this study first revealed the significance of L3MBTL2-mediated gene silencing in MYCN-amplified NB cells.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.