Sha Ping , Ma Xuehu , Hu Chunli, Feng Xue, An Yanhao, Ma Yun, Ma Yanfen
{"title":"多组学揭示了奶牛酮病早期发病过程中的血液差异代谢物和差异基因。","authors":"Sha Ping , Ma Xuehu , Hu Chunli, Feng Xue, An Yanhao, Ma Yun, Ma Yanfen","doi":"10.1016/j.ygeno.2024.110927","DOIUrl":null,"url":null,"abstract":"<div><p>Ketosis—a metabolic state characterized by elevated levels of ketone bodies in the blood or urine—reduces the performance and health of dairy cows and causes substantial economic losses for the dairy industry. Currently, beta-hydroxybutyric acid is the gold standard for determining ketosis in cows; however, as this method is only applicable postpartum, it is not conducive to the early intervention of ketosis in dairy cows. In this study, the sera of dry, periparturient, postpartum ketotic, and healthy cows were analyzed by both transcriptomics and metabolomics techniques. Moreover, changes of gene expression and metabolites were observed, and serum physiological and biochemical indexes were detected by ELISA. The purpose was to screen biomarkers that can be used to detect the incidence of dry or periparturient ketosis in cows. The results showed that ketotic cows had increased levels of glycolipid metabolism indexes, oxidizing factors, and inflammatory factors during dry periods and liver damage, which could be used as early biomarkers to predict the onset of ketosis. Transcriptomic results yielded 20 differentially expressed genes (DEGs) between ketotic and healthy cows during dry, peripartum, and postpartum periods. GO and KEGG enrichment analyses indicated that these DEGs were involved in amino acid metabolism, energy metabolism, and disease-related signaling pathways. The metabolomics sequencing results showed that ketotic cows mainly showed enrichment in tricarboxylic acid cycle, butyric acid metabolism, carbon metabolism, lysine degradation, fatty acid degradation, and other signaling pathways. Metabolites differed between ketotic and healthy cows in dry, pre-parturition, and post-parturition periods. Combined transcriptomics and metabolomics analyses identified significant enrichment in the glucagon signaling pathway and the lysine degradation signaling pathway in dry, periparturient, and postpartum ketotic cows. PRKAB2 and SETMAR—key DEGs of the glucagon signaling pathway and lysine degradation signaling pathway, respectively—can be used as key marker genes for determining the early onset of ketosis in dairy cows.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 5","pages":"Article 110927"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001484/pdfft?md5=f2af94bc739c0e96aa8aa24e6438e6cd&pid=1-s2.0-S0888754324001484-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multiomics reveals blood differential metabolites and differential genes in the early onset of ketosis in dairy cows\",\"authors\":\"Sha Ping , Ma Xuehu , Hu Chunli, Feng Xue, An Yanhao, Ma Yun, Ma Yanfen\",\"doi\":\"10.1016/j.ygeno.2024.110927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ketosis—a metabolic state characterized by elevated levels of ketone bodies in the blood or urine—reduces the performance and health of dairy cows and causes substantial economic losses for the dairy industry. Currently, beta-hydroxybutyric acid is the gold standard for determining ketosis in cows; however, as this method is only applicable postpartum, it is not conducive to the early intervention of ketosis in dairy cows. In this study, the sera of dry, periparturient, postpartum ketotic, and healthy cows were analyzed by both transcriptomics and metabolomics techniques. Moreover, changes of gene expression and metabolites were observed, and serum physiological and biochemical indexes were detected by ELISA. The purpose was to screen biomarkers that can be used to detect the incidence of dry or periparturient ketosis in cows. The results showed that ketotic cows had increased levels of glycolipid metabolism indexes, oxidizing factors, and inflammatory factors during dry periods and liver damage, which could be used as early biomarkers to predict the onset of ketosis. Transcriptomic results yielded 20 differentially expressed genes (DEGs) between ketotic and healthy cows during dry, peripartum, and postpartum periods. GO and KEGG enrichment analyses indicated that these DEGs were involved in amino acid metabolism, energy metabolism, and disease-related signaling pathways. The metabolomics sequencing results showed that ketotic cows mainly showed enrichment in tricarboxylic acid cycle, butyric acid metabolism, carbon metabolism, lysine degradation, fatty acid degradation, and other signaling pathways. Metabolites differed between ketotic and healthy cows in dry, pre-parturition, and post-parturition periods. Combined transcriptomics and metabolomics analyses identified significant enrichment in the glucagon signaling pathway and the lysine degradation signaling pathway in dry, periparturient, and postpartum ketotic cows. PRKAB2 and SETMAR—key DEGs of the glucagon signaling pathway and lysine degradation signaling pathway, respectively—can be used as key marker genes for determining the early onset of ketosis in dairy cows.</p></div>\",\"PeriodicalId\":12521,\"journal\":{\"name\":\"Genomics\",\"volume\":\"116 5\",\"pages\":\"Article 110927\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888754324001484/pdfft?md5=f2af94bc739c0e96aa8aa24e6438e6cd&pid=1-s2.0-S0888754324001484-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888754324001484\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324001484","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Multiomics reveals blood differential metabolites and differential genes in the early onset of ketosis in dairy cows
Ketosis—a metabolic state characterized by elevated levels of ketone bodies in the blood or urine—reduces the performance and health of dairy cows and causes substantial economic losses for the dairy industry. Currently, beta-hydroxybutyric acid is the gold standard for determining ketosis in cows; however, as this method is only applicable postpartum, it is not conducive to the early intervention of ketosis in dairy cows. In this study, the sera of dry, periparturient, postpartum ketotic, and healthy cows were analyzed by both transcriptomics and metabolomics techniques. Moreover, changes of gene expression and metabolites were observed, and serum physiological and biochemical indexes were detected by ELISA. The purpose was to screen biomarkers that can be used to detect the incidence of dry or periparturient ketosis in cows. The results showed that ketotic cows had increased levels of glycolipid metabolism indexes, oxidizing factors, and inflammatory factors during dry periods and liver damage, which could be used as early biomarkers to predict the onset of ketosis. Transcriptomic results yielded 20 differentially expressed genes (DEGs) between ketotic and healthy cows during dry, peripartum, and postpartum periods. GO and KEGG enrichment analyses indicated that these DEGs were involved in amino acid metabolism, energy metabolism, and disease-related signaling pathways. The metabolomics sequencing results showed that ketotic cows mainly showed enrichment in tricarboxylic acid cycle, butyric acid metabolism, carbon metabolism, lysine degradation, fatty acid degradation, and other signaling pathways. Metabolites differed between ketotic and healthy cows in dry, pre-parturition, and post-parturition periods. Combined transcriptomics and metabolomics analyses identified significant enrichment in the glucagon signaling pathway and the lysine degradation signaling pathway in dry, periparturient, and postpartum ketotic cows. PRKAB2 and SETMAR—key DEGs of the glucagon signaling pathway and lysine degradation signaling pathway, respectively—can be used as key marker genes for determining the early onset of ketosis in dairy cows.
期刊介绍:
Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation.
As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.