Karoline Myglegård Mortensen, Theis Skovsgaard Itenov, Jakob Stensballe, Thore Hillig, Claus Antonio Juel Jensen, Martin Schønemann-Lund, Morten Heiberg Bestle
{"title":"一氧化氮抑制剂的变化与重症患者的死亡率:一项队列研究。","authors":"Karoline Myglegård Mortensen, Theis Skovsgaard Itenov, Jakob Stensballe, Thore Hillig, Claus Antonio Juel Jensen, Martin Schønemann-Lund, Morten Heiberg Bestle","doi":"10.1186/s13613-024-01362-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Optimal balance between macro- and microcirculation in critically ill patients is crucial for ensuring optimal organ perfusion. Nitric oxide (NO) is a regulator of vascular hemostasis and tone. The availability of NO is controlled by asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and the availability of the NO substrates arginine and homoarginine. We investigated the changes in plasma concentrations of ADMA, SDMA, arginine, and homoarginine days 1-5 of intensive care unit (ICU) admission and the association between the change in concentration days 1-3 and 30-day all-cause mortality.</p><p><strong>Methods: </strong>Single-center cohort study of adult critically ill patients from the ICU at Copenhagen University Hospital - North Zealand. ADMA, SDMA, arginine, and homoarginine (NO-biomarkers) were measured on days 1-5. Initially, we determined the changes in NO-biomarkers days 1-5 with linear mixed models, and subsequently how the changes in NO-biomarkers days 1-3 were associated with 30-day all-cause mortality. Post-hoc we analyzed the association between plasma concentration at admission and 30-day all-cause mortality.</p><p><strong>Results: </strong>In total 567 out of 577 patients had plasma samples from days 1-5. Plasma concentrations of ADMA and arginine increased from days 1-5. SDMA concentrations increased from days 1-2, followed by a decrease from days 2-5. Concentrations of homoarginine did not change from days 1-3 but slightly increased from days 3-5. In total 512 patients were alive 3 days after ICU admission. Among these patients, a daily twofold increase in ADMA concentration from days 1-3 was associated with decreased mortality in multivariate analysis (HR 0.45; 95% CI 0.21-0.98; p = 0.046). An increase in SDMA, arginine, or homoarginine was not associated with mortality. Post-hoc we found that a twofold increase in ADMA or SDMA concentrations at admission was associated with mortality (HR 1.78; 95% CI 1.24-2.57; p = 0.0025, and HR 1.41; 95% CI 1.05-1.90; p = 0.024, respectively).</p><p><strong>Conclusions: </strong>Increasing ADMA concentrations on days 1-3 are inversely associated with mortality, however not with the same strength as high ADMA or SDMA concentrations at admission. We suggest that admission concentrations are the focus of future research on ADMA and SDMA as predictors of mortality or potential therapeutical targets in ICU patients.</p>","PeriodicalId":7966,"journal":{"name":"Annals of Intensive Care","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349968/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes in nitric oxide inhibitors and mortality in critically ill patients: a cohort study.\",\"authors\":\"Karoline Myglegård Mortensen, Theis Skovsgaard Itenov, Jakob Stensballe, Thore Hillig, Claus Antonio Juel Jensen, Martin Schønemann-Lund, Morten Heiberg Bestle\",\"doi\":\"10.1186/s13613-024-01362-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Optimal balance between macro- and microcirculation in critically ill patients is crucial for ensuring optimal organ perfusion. Nitric oxide (NO) is a regulator of vascular hemostasis and tone. The availability of NO is controlled by asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and the availability of the NO substrates arginine and homoarginine. We investigated the changes in plasma concentrations of ADMA, SDMA, arginine, and homoarginine days 1-5 of intensive care unit (ICU) admission and the association between the change in concentration days 1-3 and 30-day all-cause mortality.</p><p><strong>Methods: </strong>Single-center cohort study of adult critically ill patients from the ICU at Copenhagen University Hospital - North Zealand. ADMA, SDMA, arginine, and homoarginine (NO-biomarkers) were measured on days 1-5. Initially, we determined the changes in NO-biomarkers days 1-5 with linear mixed models, and subsequently how the changes in NO-biomarkers days 1-3 were associated with 30-day all-cause mortality. Post-hoc we analyzed the association between plasma concentration at admission and 30-day all-cause mortality.</p><p><strong>Results: </strong>In total 567 out of 577 patients had plasma samples from days 1-5. Plasma concentrations of ADMA and arginine increased from days 1-5. SDMA concentrations increased from days 1-2, followed by a decrease from days 2-5. Concentrations of homoarginine did not change from days 1-3 but slightly increased from days 3-5. In total 512 patients were alive 3 days after ICU admission. Among these patients, a daily twofold increase in ADMA concentration from days 1-3 was associated with decreased mortality in multivariate analysis (HR 0.45; 95% CI 0.21-0.98; p = 0.046). An increase in SDMA, arginine, or homoarginine was not associated with mortality. Post-hoc we found that a twofold increase in ADMA or SDMA concentrations at admission was associated with mortality (HR 1.78; 95% CI 1.24-2.57; p = 0.0025, and HR 1.41; 95% CI 1.05-1.90; p = 0.024, respectively).</p><p><strong>Conclusions: </strong>Increasing ADMA concentrations on days 1-3 are inversely associated with mortality, however not with the same strength as high ADMA or SDMA concentrations at admission. We suggest that admission concentrations are the focus of future research on ADMA and SDMA as predictors of mortality or potential therapeutical targets in ICU patients.</p>\",\"PeriodicalId\":7966,\"journal\":{\"name\":\"Annals of Intensive Care\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349968/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Intensive Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13613-024-01362-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Intensive Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13613-024-01362-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
Changes in nitric oxide inhibitors and mortality in critically ill patients: a cohort study.
Background: Optimal balance between macro- and microcirculation in critically ill patients is crucial for ensuring optimal organ perfusion. Nitric oxide (NO) is a regulator of vascular hemostasis and tone. The availability of NO is controlled by asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and the availability of the NO substrates arginine and homoarginine. We investigated the changes in plasma concentrations of ADMA, SDMA, arginine, and homoarginine days 1-5 of intensive care unit (ICU) admission and the association between the change in concentration days 1-3 and 30-day all-cause mortality.
Methods: Single-center cohort study of adult critically ill patients from the ICU at Copenhagen University Hospital - North Zealand. ADMA, SDMA, arginine, and homoarginine (NO-biomarkers) were measured on days 1-5. Initially, we determined the changes in NO-biomarkers days 1-5 with linear mixed models, and subsequently how the changes in NO-biomarkers days 1-3 were associated with 30-day all-cause mortality. Post-hoc we analyzed the association between plasma concentration at admission and 30-day all-cause mortality.
Results: In total 567 out of 577 patients had plasma samples from days 1-5. Plasma concentrations of ADMA and arginine increased from days 1-5. SDMA concentrations increased from days 1-2, followed by a decrease from days 2-5. Concentrations of homoarginine did not change from days 1-3 but slightly increased from days 3-5. In total 512 patients were alive 3 days after ICU admission. Among these patients, a daily twofold increase in ADMA concentration from days 1-3 was associated with decreased mortality in multivariate analysis (HR 0.45; 95% CI 0.21-0.98; p = 0.046). An increase in SDMA, arginine, or homoarginine was not associated with mortality. Post-hoc we found that a twofold increase in ADMA or SDMA concentrations at admission was associated with mortality (HR 1.78; 95% CI 1.24-2.57; p = 0.0025, and HR 1.41; 95% CI 1.05-1.90; p = 0.024, respectively).
Conclusions: Increasing ADMA concentrations on days 1-3 are inversely associated with mortality, however not with the same strength as high ADMA or SDMA concentrations at admission. We suggest that admission concentrations are the focus of future research on ADMA and SDMA as predictors of mortality or potential therapeutical targets in ICU patients.
期刊介绍:
Annals of Intensive Care is an online peer-reviewed journal that publishes high-quality review articles and original research papers in the field of intensive care medicine. It targets critical care providers including attending physicians, fellows, residents, nurses, and physiotherapists, who aim to enhance their knowledge and provide optimal care for their patients. The journal's articles are included in various prestigious databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, OCLC, PubMed, PubMed Central, Science Citation Index Expanded, SCOPUS, and Summon by Serial Solutions.