多孔银和 Ag-TM 纳米结构氧还原反应机理的第一性原理研究

IF 2.1 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Kejiang Fu , Jingjing Wu , Xin Tang
{"title":"多孔银和 Ag-TM 纳米结构氧还原反应机理的第一性原理研究","authors":"Kejiang Fu ,&nbsp;Jingjing Wu ,&nbsp;Xin Tang","doi":"10.1016/j.ssc.2024.115665","DOIUrl":null,"url":null,"abstract":"<div><p>Porous Ag has good electron conductivity and is one of the typical oxygen reduction reaction(ORR) catalysts. In order to investigate the mechanism of porous Ag for ORR, the relaxed structure and detailed partial density of states are determined using density-functional theory. Among multiple possible active sites, the overpotential of porous Ag is 0.50 V, which is better than that of Ag (111) at 0.62 V. After doping Pt and Pd, the overpotentials are 0.47 V and 0.49 V, respectively. Furthermore, the introduction of a transition metal has led to changes in the charge distribution on the catalyst surface, which has resulted in improved catalytic performance. By investigating the synergistic effects between doped transition metals and ORR intermediates, this can facilitate the development of catalysts with higher activity and better stability.</p></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"392 ","pages":"Article 115665"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A first principles study of the oxygen reduction reaction mechanism on porous Ag and Ag-TM nanostructure\",\"authors\":\"Kejiang Fu ,&nbsp;Jingjing Wu ,&nbsp;Xin Tang\",\"doi\":\"10.1016/j.ssc.2024.115665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Porous Ag has good electron conductivity and is one of the typical oxygen reduction reaction(ORR) catalysts. In order to investigate the mechanism of porous Ag for ORR, the relaxed structure and detailed partial density of states are determined using density-functional theory. Among multiple possible active sites, the overpotential of porous Ag is 0.50 V, which is better than that of Ag (111) at 0.62 V. After doping Pt and Pd, the overpotentials are 0.47 V and 0.49 V, respectively. Furthermore, the introduction of a transition metal has led to changes in the charge distribution on the catalyst surface, which has resulted in improved catalytic performance. By investigating the synergistic effects between doped transition metals and ORR intermediates, this can facilitate the development of catalysts with higher activity and better stability.</p></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"392 \",\"pages\":\"Article 115665\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109824002424\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824002424","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

多孔银具有良好的电子传导性,是典型的氧还原反应(ORR)催化剂之一。为了研究多孔银的氧还原反应机理,利用密度泛函理论确定了多孔银的弛豫结构和详细的部分态密度。在多种可能的活性位点中,多孔银的过电位为 0.50 V,优于 Ag (111) 的 0.62 V。此外,过渡金属的引入改变了催化剂表面的电荷分布,从而提高了催化性能。通过研究掺杂过渡金属与 ORR 中间体之间的协同效应,有助于开发出活性更高、稳定性更好的催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A first principles study of the oxygen reduction reaction mechanism on porous Ag and Ag-TM nanostructure

Porous Ag has good electron conductivity and is one of the typical oxygen reduction reaction(ORR) catalysts. In order to investigate the mechanism of porous Ag for ORR, the relaxed structure and detailed partial density of states are determined using density-functional theory. Among multiple possible active sites, the overpotential of porous Ag is 0.50 V, which is better than that of Ag (111) at 0.62 V. After doping Pt and Pd, the overpotentials are 0.47 V and 0.49 V, respectively. Furthermore, the introduction of a transition metal has led to changes in the charge distribution on the catalyst surface, which has resulted in improved catalytic performance. By investigating the synergistic effects between doped transition metals and ORR intermediates, this can facilitate the development of catalysts with higher activity and better stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信