SC134-TCB 靶向岩藻糖基-GM1 的 T 细胞参与抗体,在临床前小细胞肺癌模型中具有强大的抗肿瘤活性。

IF 5.3 2区 医学 Q1 ONCOLOGY
Foram Dave, Poonam Vaghela, Bryony Heath, Zuzana Dunster, Elena Dubinina, Dhruma Thakker, Katie Mann, Joe Chadwick, Gaëlle Cane, Bubacarr G Kaira, Omar J Mohammed, Ruhul Choudhury, Samantha Paston, Tina Parsons, Mireille Vankemmelbeke, Lindy Durrant
{"title":"SC134-TCB 靶向岩藻糖基-GM1 的 T 细胞参与抗体,在临床前小细胞肺癌模型中具有强大的抗肿瘤活性。","authors":"Foram Dave, Poonam Vaghela, Bryony Heath, Zuzana Dunster, Elena Dubinina, Dhruma Thakker, Katie Mann, Joe Chadwick, Gaëlle Cane, Bubacarr G Kaira, Omar J Mohammed, Ruhul Choudhury, Samantha Paston, Tina Parsons, Mireille Vankemmelbeke, Lindy Durrant","doi":"10.1158/1535-7163.MCT-24-0187","DOIUrl":null,"url":null,"abstract":"<p><p>Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumors but virtually absent from normal healthy tissues. In this study, we validate a FucGM1-targeting T cell-redirecting bispecific (TCB) antibody for the treatment of SCLC. More than 80% of patient-derived xenograft tissues of SCLC expressed FucGM1, whereas only three normal human tissues: pituitary, thymus, and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanized SC134 antibody, exhibited nanomolar efficiency in FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as IFNγ, IL2, and TNFα and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumor controlling activity translated into an effective in vivo anti-DMS79 tumor therapy, resulting in 100% tumor-free survival in a human peripheral blood mononuclear cell admixed setting and 40% overall survival (55% tumor growth inhibition) with systemically administered human peripheral blood mononuclear cells. Combination treatment with atezolizumab further enhanced survival and tumor growth inhibition (up to 73%). A 10-fold SC134-TCB dose reduction maintained the strong in vivo antitumor impact, translating into 70% overall survival (P < 0.0001). Whole-blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for patients with SCLC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1626-1638"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532774/pdf/","citationCount":"0","resultStr":"{\"title\":\"SC134-TCB Targeting Fucosyl-GM1, a T Cell-Engaging Antibody with Potent Antitumor Activity in Preclinical Small Cell Lung Cancer Models.\",\"authors\":\"Foram Dave, Poonam Vaghela, Bryony Heath, Zuzana Dunster, Elena Dubinina, Dhruma Thakker, Katie Mann, Joe Chadwick, Gaëlle Cane, Bubacarr G Kaira, Omar J Mohammed, Ruhul Choudhury, Samantha Paston, Tina Parsons, Mireille Vankemmelbeke, Lindy Durrant\",\"doi\":\"10.1158/1535-7163.MCT-24-0187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumors but virtually absent from normal healthy tissues. In this study, we validate a FucGM1-targeting T cell-redirecting bispecific (TCB) antibody for the treatment of SCLC. More than 80% of patient-derived xenograft tissues of SCLC expressed FucGM1, whereas only three normal human tissues: pituitary, thymus, and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanized SC134 antibody, exhibited nanomolar efficiency in FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as IFNγ, IL2, and TNFα and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumor controlling activity translated into an effective in vivo anti-DMS79 tumor therapy, resulting in 100% tumor-free survival in a human peripheral blood mononuclear cell admixed setting and 40% overall survival (55% tumor growth inhibition) with systemically administered human peripheral blood mononuclear cells. Combination treatment with atezolizumab further enhanced survival and tumor growth inhibition (up to 73%). A 10-fold SC134-TCB dose reduction maintained the strong in vivo antitumor impact, translating into 70% overall survival (P < 0.0001). Whole-blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for patients with SCLC.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"1626-1638\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532774/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-24-0187\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0187","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小细胞肺癌(SCLC)是一种侵袭性疾病,治疗方案有限。Fucosyl-GM1(FucGM1)是一种在大多数小细胞肺癌肿瘤中过度表达的糖脂,但在正常健康组织中几乎不存在。在这里,我们验证了一种用于治疗 SCLC 的 FucGM1 靶向 T 细胞重定向双特异性抗体(TCB)。80%以上的SCLC患者异种移植(PDX)组织表达FucGM1,而只有三种正常人体组织:垂体、胸腺和皮肤表达低度和局灶性FucGM1。基于 Fc 沉默的人源化 h134 抗体的 FucGM1 靶向 TCB(SC134-TCB)表现出纳摩尔级的 FucGM1 糖脂和 SCLC 细胞表面结合。SC134-TCB 对 SCLC 细胞株有很强的体内外杀伤力,EC50 值从 7.2 pmol/L 到 211.0 pmol/L,可有效激活 T 细胞,效率为皮摩尔级,同时产生靶向依赖性细胞因子,如γ干扰素、白细胞介素-2 和肿瘤坏死因子α,并促进 CD4 和 CD8 T 细胞的增殖。体内外 SC134-TCB 的肿瘤控制活性转化为一种有效的体内抗 DMS79 肿瘤疗法,在与人 PBMC 混合的情况下,无瘤存活率达到 100%,在全身给药的情况下,人 PBMC 的总存活率为 40%(肿瘤生长抑制率为 55%)。与 Atezolizumab 的联合治疗进一步提高了生存率和肿瘤生长抑制率(高达 73%)。SC134-TCB剂量降低10倍后,体内抗肿瘤效果依然很强,总生存率达到70%(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SC134-TCB Targeting Fucosyl-GM1, a T Cell-Engaging Antibody with Potent Antitumor Activity in Preclinical Small Cell Lung Cancer Models.

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumors but virtually absent from normal healthy tissues. In this study, we validate a FucGM1-targeting T cell-redirecting bispecific (TCB) antibody for the treatment of SCLC. More than 80% of patient-derived xenograft tissues of SCLC expressed FucGM1, whereas only three normal human tissues: pituitary, thymus, and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanized SC134 antibody, exhibited nanomolar efficiency in FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as IFNγ, IL2, and TNFα and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumor controlling activity translated into an effective in vivo anti-DMS79 tumor therapy, resulting in 100% tumor-free survival in a human peripheral blood mononuclear cell admixed setting and 40% overall survival (55% tumor growth inhibition) with systemically administered human peripheral blood mononuclear cells. Combination treatment with atezolizumab further enhanced survival and tumor growth inhibition (up to 73%). A 10-fold SC134-TCB dose reduction maintained the strong in vivo antitumor impact, translating into 70% overall survival (P < 0.0001). Whole-blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for patients with SCLC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信