铁变态反应中 N6-甲基腺苷修饰的调控机制及其对疾病发病机制的影响。

IF 5.2 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
{"title":"铁变态反应中 N6-甲基腺苷修饰的调控机制及其对疾病发病机制的影响。","authors":"","doi":"10.1016/j.lfs.2024.123011","DOIUrl":null,"url":null,"abstract":"<div><h3>Heading aims</h3><p>Based on the current knowledge of the molecular mechanisms by which m6A influences ferroptosis, our objective is to underscore the intricate and interdependent relationships between m6A and the principal regulatory pathways of ferroptosis, as well as other molecules, emphasizing its relevance to diseases associated with this cell death mode.</p></div><div><h3>Materials and methods</h3><p>We conducted a literature search using the keywords “m6A and ferroptosis” across PubMed, Web of Science, and Medline. The search was limited to English-language publications from 2017 to 2024. Retrieved articles were managed using Endnote software. Two authors independently screened the search results and reviewed the full texts of selected articles.</p></div><div><h3>Key findings</h3><p>Abnormal m6A levels are often identified as critical regulators of ferroptosis. Specifically, “writers”, “readers” and “erasers” that dynamically modulate m6A function regulate various pathways in ferroptosis including iron metabolism, lipid metabolism and antioxidant system. Additionally, we provide an overview of the role of m6A-mediated ferroptosis in multiple diseases and summarize the potential applications of m6A-mediated ferroptosis, including its use as a therapeutic target for diseases and as diagnostic as well as prognostic biomarkers.</p></div><div><h3>Significance</h3><p>N6-methyladenosine (m6A) modification, a prevalent RNA modification in eukaryotic cells, is crucial in regulating various aspects of RNA metabolism. Notably, accumulating evidence has implicated m6A modification in ferroptosis, a form of iron-dependent cell death characterized by elevated iron levels and lipid peroxide accumulation. Overall, this review sheds light on the potential diagnostic and therapeutic applications of m6A regulators in addressing conditions associated with ferroptosis.</p></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The regulatory mechanisms of N6-methyladenosine modification in ferroptosis and its implications in disease pathogenesis\",\"authors\":\"\",\"doi\":\"10.1016/j.lfs.2024.123011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Heading aims</h3><p>Based on the current knowledge of the molecular mechanisms by which m6A influences ferroptosis, our objective is to underscore the intricate and interdependent relationships between m6A and the principal regulatory pathways of ferroptosis, as well as other molecules, emphasizing its relevance to diseases associated with this cell death mode.</p></div><div><h3>Materials and methods</h3><p>We conducted a literature search using the keywords “m6A and ferroptosis” across PubMed, Web of Science, and Medline. The search was limited to English-language publications from 2017 to 2024. Retrieved articles were managed using Endnote software. Two authors independently screened the search results and reviewed the full texts of selected articles.</p></div><div><h3>Key findings</h3><p>Abnormal m6A levels are often identified as critical regulators of ferroptosis. Specifically, “writers”, “readers” and “erasers” that dynamically modulate m6A function regulate various pathways in ferroptosis including iron metabolism, lipid metabolism and antioxidant system. Additionally, we provide an overview of the role of m6A-mediated ferroptosis in multiple diseases and summarize the potential applications of m6A-mediated ferroptosis, including its use as a therapeutic target for diseases and as diagnostic as well as prognostic biomarkers.</p></div><div><h3>Significance</h3><p>N6-methyladenosine (m6A) modification, a prevalent RNA modification in eukaryotic cells, is crucial in regulating various aspects of RNA metabolism. Notably, accumulating evidence has implicated m6A modification in ferroptosis, a form of iron-dependent cell death characterized by elevated iron levels and lipid peroxide accumulation. Overall, this review sheds light on the potential diagnostic and therapeutic applications of m6A regulators in addressing conditions associated with ferroptosis.</p></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320524006015\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524006015","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

标题目的:基于目前对 m6A 影响铁突变的分子机制的了解,我们的目的是强调 m6A 与铁突变的主要调控途径以及其他分子之间错综复杂和相互依存的关系,强调其与这种细胞死亡模式相关疾病的相关性:我们在 PubMed、Web of Science 和 Medline 上以 "m6A 和铁突变 "为关键词进行了文献检索。检索仅限于 2017 年至 2024 年的英文出版物。检索到的文章使用 Endnote 软件进行管理。两位作者独立筛选了检索结果,并审阅了所选文章的全文:异常的 m6A 水平通常被认为是铁氧化的关键调节因子。具体来说,动态调节 m6A 功能的 "写手"、"读者 "和 "擦除者 "调节铁变态反应的各种途径,包括铁代谢、脂代谢和抗氧化系统。此外,我们还概述了 m6A 介导的铁突变在多种疾病中的作用,并总结了 m6A 介导的铁突变的潜在应用,包括将其用作疾病的治疗靶点以及诊断和预后生物标志物:N6-甲基腺苷(m6A)修饰是真核细胞中普遍存在的一种 RNA 修饰,对调节 RNA 代谢的各个方面至关重要。值得注意的是,越来越多的证据表明,m6A修饰与铁突变有关,铁突变是一种以铁水平升高和过氧化脂质积累为特征的铁依赖性细胞死亡形式。总之,本综述揭示了 m6A 调节剂在诊断和治疗与铁变态反应相关的疾病方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The regulatory mechanisms of N6-methyladenosine modification in ferroptosis and its implications in disease pathogenesis

The regulatory mechanisms of N6-methyladenosine modification in ferroptosis and its implications in disease pathogenesis

Heading aims

Based on the current knowledge of the molecular mechanisms by which m6A influences ferroptosis, our objective is to underscore the intricate and interdependent relationships between m6A and the principal regulatory pathways of ferroptosis, as well as other molecules, emphasizing its relevance to diseases associated with this cell death mode.

Materials and methods

We conducted a literature search using the keywords “m6A and ferroptosis” across PubMed, Web of Science, and Medline. The search was limited to English-language publications from 2017 to 2024. Retrieved articles were managed using Endnote software. Two authors independently screened the search results and reviewed the full texts of selected articles.

Key findings

Abnormal m6A levels are often identified as critical regulators of ferroptosis. Specifically, “writers”, “readers” and “erasers” that dynamically modulate m6A function regulate various pathways in ferroptosis including iron metabolism, lipid metabolism and antioxidant system. Additionally, we provide an overview of the role of m6A-mediated ferroptosis in multiple diseases and summarize the potential applications of m6A-mediated ferroptosis, including its use as a therapeutic target for diseases and as diagnostic as well as prognostic biomarkers.

Significance

N6-methyladenosine (m6A) modification, a prevalent RNA modification in eukaryotic cells, is crucial in regulating various aspects of RNA metabolism. Notably, accumulating evidence has implicated m6A modification in ferroptosis, a form of iron-dependent cell death characterized by elevated iron levels and lipid peroxide accumulation. Overall, this review sheds light on the potential diagnostic and therapeutic applications of m6A regulators in addressing conditions associated with ferroptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Life sciences
Life sciences 医学-药学
CiteScore
12.20
自引率
1.60%
发文量
841
审稿时长
6 months
期刊介绍: Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed. The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信