单基因疾病的系统复杂性:脊髓性肌萎缩症的分子网络。

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY
Brain Pub Date : 2025-02-03 DOI:10.1093/brain/awae272
Ines Tapken, Theresa Schweitzer, Martina Paganin, Tobias Schüning, Nora T Detering, Gaurav Sharma, Moritz Niesert, Afshin Saffari, Daniela Kuhn, Amy Glynn, Federica Cieri, Pamela Santonicola, Claire Cannet, Florian Gerstner, Kiterie M E Faller, Yu-Ting Huang, Rashmi Kothary, Thomas H Gillingwater, Elia Di Schiavi, Christian M Simon, Niko Hensel, Andreas Ziegler, Gabriella Viero, Andreas Pich, Peter Claus
{"title":"单基因疾病的系统复杂性:脊髓性肌萎缩症的分子网络。","authors":"Ines Tapken, Theresa Schweitzer, Martina Paganin, Tobias Schüning, Nora T Detering, Gaurav Sharma, Moritz Niesert, Afshin Saffari, Daniela Kuhn, Amy Glynn, Federica Cieri, Pamela Santonicola, Claire Cannet, Florian Gerstner, Kiterie M E Faller, Yu-Ting Huang, Rashmi Kothary, Thomas H Gillingwater, Elia Di Schiavi, Christian M Simon, Niko Hensel, Andreas Ziegler, Gabriella Viero, Andreas Pich, Peter Claus","doi":"10.1093/brain/awae272","DOIUrl":null,"url":null,"abstract":"<p><p>Monogenic diseases are well-suited paradigms for the causal analysis of disease-driving molecular patterns. Spinal muscular atrophy (SMA) is one such monogenic model, caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. Although several functions of the SMN protein have been studied, single functions and pathways alone do not allow the identification of crucial disease-driving molecules. Here, we analysed the systemic characteristics of SMA, using proteomics, phosphoproteomics, translatomics and interactomics, from two mouse models with different disease severities and genetics. This systems approach revealed subnetworks and proteins characterizing commonalities and differences of both models. To link the identified molecular networks with the disease-causing SMN protein, we combined SMN-interactome data with both proteomes, creating a comprehensive representation of SMA. By this approach, disease hubs and bottlenecks between SMN and downstream pathways could be identified. Linking a disease-causing molecule with widespread molecular dysregulations via multiomics is a concept for analyses of monogenic diseases.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":" ","pages":"580-596"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The systemic complexity of a monogenic disease: the molecular network of spinal muscular atrophy.\",\"authors\":\"Ines Tapken, Theresa Schweitzer, Martina Paganin, Tobias Schüning, Nora T Detering, Gaurav Sharma, Moritz Niesert, Afshin Saffari, Daniela Kuhn, Amy Glynn, Federica Cieri, Pamela Santonicola, Claire Cannet, Florian Gerstner, Kiterie M E Faller, Yu-Ting Huang, Rashmi Kothary, Thomas H Gillingwater, Elia Di Schiavi, Christian M Simon, Niko Hensel, Andreas Ziegler, Gabriella Viero, Andreas Pich, Peter Claus\",\"doi\":\"10.1093/brain/awae272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monogenic diseases are well-suited paradigms for the causal analysis of disease-driving molecular patterns. Spinal muscular atrophy (SMA) is one such monogenic model, caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. Although several functions of the SMN protein have been studied, single functions and pathways alone do not allow the identification of crucial disease-driving molecules. Here, we analysed the systemic characteristics of SMA, using proteomics, phosphoproteomics, translatomics and interactomics, from two mouse models with different disease severities and genetics. This systems approach revealed subnetworks and proteins characterizing commonalities and differences of both models. To link the identified molecular networks with the disease-causing SMN protein, we combined SMN-interactome data with both proteomes, creating a comprehensive representation of SMA. By this approach, disease hubs and bottlenecks between SMN and downstream pathways could be identified. Linking a disease-causing molecule with widespread molecular dysregulations via multiomics is a concept for analyses of monogenic diseases.</p>\",\"PeriodicalId\":9063,\"journal\":{\"name\":\"Brain\",\"volume\":\" \",\"pages\":\"580-596\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/brain/awae272\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae272","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单基因疾病是对疾病驱动分子模式进行因果分析的理想范例。脊髓性肌肉萎缩症(SMA)就是这样一种由运动神经元生存1(SMN1)基因突变或缺失引起的单基因病。尽管已对 SMN 蛋白的多种功能进行了研究,但仅凭单一功能和途径并不能确定关键的致病分子。在这里,我们利用蛋白质组学、磷酸化蛋白质组学、易位组学和相互作用组学分析了两种具有不同疾病严重程度和遗传学特征的小鼠模型的 SMA 系统特征。这种系统方法揭示了两个模型的亚网络和蛋白质的共性和差异。为了将已确定的分子网络与致病的 SMN 蛋白联系起来,我们将 SMN-相互作用组数据与两个蛋白质组结合起来,形成了 SMA 的综合表征。通过这种方法,可以确定SMN和下游通路之间的疾病枢纽和瓶颈。通过多组学将致病分子与广泛的分子失调联系起来是分析单基因疾病的一个概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The systemic complexity of a monogenic disease: the molecular network of spinal muscular atrophy.

Monogenic diseases are well-suited paradigms for the causal analysis of disease-driving molecular patterns. Spinal muscular atrophy (SMA) is one such monogenic model, caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. Although several functions of the SMN protein have been studied, single functions and pathways alone do not allow the identification of crucial disease-driving molecules. Here, we analysed the systemic characteristics of SMA, using proteomics, phosphoproteomics, translatomics and interactomics, from two mouse models with different disease severities and genetics. This systems approach revealed subnetworks and proteins characterizing commonalities and differences of both models. To link the identified molecular networks with the disease-causing SMN protein, we combined SMN-interactome data with both proteomes, creating a comprehensive representation of SMA. By this approach, disease hubs and bottlenecks between SMN and downstream pathways could be identified. Linking a disease-causing molecule with widespread molecular dysregulations via multiomics is a concept for analyses of monogenic diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信