{"title":"BuildAMol:基于片段的分子设计的通用 Python 工具包。","authors":"Noah Kleinschmidt, Thomas Lemmin","doi":"10.1186/s13321-024-00900-6","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years computational methods for molecular modeling have become a prime focus of computational biology and cheminformatics. Many dedicated systems exist for modeling specific classes of molecules such as proteins or small drug-like ligands. These are often heavily tailored toward the automated generation of molecular structures based on some meta-input by the user and are not intended for expert-driven structure assembly. Dedicated manual or semi-automated assembly software tools exist for a variety of molecule classes but are limited in the scope of structures they can produce. In this work we present BuildAMol, a highly flexible and extendable, general-purpose fragment-based molecular assembly toolkit. Written in Python and featuring a well-documented, user-friendly API, BuildAMol empowers researchers with a framework for detailed manual or semi-automated construction of diverse molecular models. Unlike specialized software, BuildAMol caters to a broad range of applications. We demonstrate its versatility across various use cases, encompassing generating metal complexes or the modeling of dendrimers or integrated into a drug discovery pipeline. By providing a robust foundation for expert-driven model building, BuildAMol holds promise as a valuable tool for the continuous integration and advancement of powerful deep learning techniques.</p><p><b>Scientific contribution</b></p><p>BuildAMol introduces a cutting-edge framework for molecular modeling that seamlessly blends versatility with user-friendly accessibility. This innovative toolkit integrates modeling, modification, optimization, and visualization functions within a unified API, and facilitates collaboration with other cheminformatics libraries. BuildAMol, with its shallow learning curve, serves as a versatile tool for various molecular applications while also laying the groundwork for the development of specialized software tools, contributing to the progress of molecular research and innovation.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00900-6","citationCount":"0","resultStr":"{\"title\":\"BuildAMol: a versatile Python toolkit for fragment-based molecular design\",\"authors\":\"Noah Kleinschmidt, Thomas Lemmin\",\"doi\":\"10.1186/s13321-024-00900-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years computational methods for molecular modeling have become a prime focus of computational biology and cheminformatics. Many dedicated systems exist for modeling specific classes of molecules such as proteins or small drug-like ligands. These are often heavily tailored toward the automated generation of molecular structures based on some meta-input by the user and are not intended for expert-driven structure assembly. Dedicated manual or semi-automated assembly software tools exist for a variety of molecule classes but are limited in the scope of structures they can produce. In this work we present BuildAMol, a highly flexible and extendable, general-purpose fragment-based molecular assembly toolkit. Written in Python and featuring a well-documented, user-friendly API, BuildAMol empowers researchers with a framework for detailed manual or semi-automated construction of diverse molecular models. Unlike specialized software, BuildAMol caters to a broad range of applications. We demonstrate its versatility across various use cases, encompassing generating metal complexes or the modeling of dendrimers or integrated into a drug discovery pipeline. By providing a robust foundation for expert-driven model building, BuildAMol holds promise as a valuable tool for the continuous integration and advancement of powerful deep learning techniques.</p><p><b>Scientific contribution</b></p><p>BuildAMol introduces a cutting-edge framework for molecular modeling that seamlessly blends versatility with user-friendly accessibility. This innovative toolkit integrates modeling, modification, optimization, and visualization functions within a unified API, and facilitates collaboration with other cheminformatics libraries. BuildAMol, with its shallow learning curve, serves as a versatile tool for various molecular applications while also laying the groundwork for the development of specialized software tools, contributing to the progress of molecular research and innovation.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00900-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00900-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00900-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
BuildAMol: a versatile Python toolkit for fragment-based molecular design
In recent years computational methods for molecular modeling have become a prime focus of computational biology and cheminformatics. Many dedicated systems exist for modeling specific classes of molecules such as proteins or small drug-like ligands. These are often heavily tailored toward the automated generation of molecular structures based on some meta-input by the user and are not intended for expert-driven structure assembly. Dedicated manual or semi-automated assembly software tools exist for a variety of molecule classes but are limited in the scope of structures they can produce. In this work we present BuildAMol, a highly flexible and extendable, general-purpose fragment-based molecular assembly toolkit. Written in Python and featuring a well-documented, user-friendly API, BuildAMol empowers researchers with a framework for detailed manual or semi-automated construction of diverse molecular models. Unlike specialized software, BuildAMol caters to a broad range of applications. We demonstrate its versatility across various use cases, encompassing generating metal complexes or the modeling of dendrimers or integrated into a drug discovery pipeline. By providing a robust foundation for expert-driven model building, BuildAMol holds promise as a valuable tool for the continuous integration and advancement of powerful deep learning techniques.
Scientific contribution
BuildAMol introduces a cutting-edge framework for molecular modeling that seamlessly blends versatility with user-friendly accessibility. This innovative toolkit integrates modeling, modification, optimization, and visualization functions within a unified API, and facilitates collaboration with other cheminformatics libraries. BuildAMol, with its shallow learning curve, serves as a versatile tool for various molecular applications while also laying the groundwork for the development of specialized software tools, contributing to the progress of molecular research and innovation.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.