{"title":"碘化物介导的膦 P(V/III)氧化还原偶联剂促成的醇类电化学氰化。","authors":"Xuewen Guo, Nathan G Price, Qilei Zhu","doi":"10.1021/acs.orglett.4c02550","DOIUrl":null,"url":null,"abstract":"<p><p>We report herein a mild electrochemical method to transform alcohols into their corresponding nitriles by using commercially available reagents. This protocol accepts substrates with various functional groups including those that are susceptible to oxidative decomposition. Mechanistic studies revealed a critical iodide-mediated phosphine electrochemical oxidation pathway leading to the alkoxyphosphonium intermediate, followed by nucleophilic substitution by a cyanide nucleophile. This method demonstrates the use of electrochemistry in replacing azo-type reagents in direct nucleophilic substitution and homologation of alcohol substrates.</p>","PeriodicalId":54,"journal":{"name":"Organic Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Cyanation of Alcohols Enabled by an Iodide-Mediated Phosphine P(V/III) Redox Couple.\",\"authors\":\"Xuewen Guo, Nathan G Price, Qilei Zhu\",\"doi\":\"10.1021/acs.orglett.4c02550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report herein a mild electrochemical method to transform alcohols into their corresponding nitriles by using commercially available reagents. This protocol accepts substrates with various functional groups including those that are susceptible to oxidative decomposition. Mechanistic studies revealed a critical iodide-mediated phosphine electrochemical oxidation pathway leading to the alkoxyphosphonium intermediate, followed by nucleophilic substitution by a cyanide nucleophile. This method demonstrates the use of electrochemistry in replacing azo-type reagents in direct nucleophilic substitution and homologation of alcohol substrates.</p>\",\"PeriodicalId\":54,\"journal\":{\"name\":\"Organic Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.orglett.4c02550\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.orglett.4c02550","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Electrochemical Cyanation of Alcohols Enabled by an Iodide-Mediated Phosphine P(V/III) Redox Couple.
We report herein a mild electrochemical method to transform alcohols into their corresponding nitriles by using commercially available reagents. This protocol accepts substrates with various functional groups including those that are susceptible to oxidative decomposition. Mechanistic studies revealed a critical iodide-mediated phosphine electrochemical oxidation pathway leading to the alkoxyphosphonium intermediate, followed by nucleophilic substitution by a cyanide nucleophile. This method demonstrates the use of electrochemistry in replacing azo-type reagents in direct nucleophilic substitution and homologation of alcohol substrates.
期刊介绍:
Organic Letters invites original reports of fundamental research in all branches of the theory and practice of organic, physical organic, organometallic,medicinal, and bioorganic chemistry. Organic Letters provides rapid disclosure of the key elements of significant studies that are of interest to a large portion of the organic community. In selecting manuscripts for publication, the Editors place emphasis on the originality, quality and wide interest of the work. Authors should provide enough background information to place the new disclosure in context and to justify the rapid publication format. Back-to-back Letters will be considered. Full details should be reserved for an Article, which should appear in due course.