{"title":"将八精氨酸共轭脂质体尼莫地平加入温度反应凝胶中用于鼻脑给药","authors":"Shuai Hong, Changxiu Lin, Junsheng Hu, Jingshu Piao, Ming Guan Piao","doi":"10.1021/acs.molpharmaceut.4c00634","DOIUrl":null,"url":null,"abstract":"<p><p>Nimodipine is the primary clinical drug used to treat cerebral vasospasm following subarachnoid hemorrhage. Currently, tablets have low bioavailability when taken orally, and injections contain ethanol. Therefore, we investigated a new method of nimodipine administration, namely, nasoencephalic administration. Nasal administration of nimodipine was carried out by attaching the cell-penetrating peptide octa-arginine (R8) to liposomes of nimodipine and incorporating it into a temperature-sensitive in situ gel. The prepared liposomes and gels underwent separate evaluations for in vitro characterization. In vitro release exhibited a significant slow-release effect. In vitro toad maxillary cilia model, RPMI 2650 cytotoxicity, and in vivo SD rat pathological histotoxicity experiments showed that all the dosage from the groups had no significant toxicity to toad maxillary cilia, RPMI 2650 cells, and SD rat tissues and organs, and the cilia continued to oscillate up to 694 ± 10.15 min, with the survival rate of the cells being above 85%. A transwell nasal mucosa cell model and an isolated porcine nasal mucosa model were established, and the results showed that the osmolality of the R8-modified nimodipine liposomal gel to nasal mucosal cells and isolated porcine nasal mucosa was 30.41 ± 2.14 and 65.9 ± 7.34 μg/mL, respectively, which was significantly higher than that of the NM-Solution and PEGylated nimodipine liposome gel groups. Animal fluorescence imaging studies revealed that the R8-modified nimodipine liposomal gel displayed increased brain fluorescence intensity compared to the normal liposomal gel. Pharmacokinetic results showed that after transnasal administration, the AUC<sub>(0-∞)</sub> of the R8-modified nimodipine liposomal gel was 11.662 ± 1.97 μg·mL<sup>-1</sup>, which was significantly higher than that of the plain nimodipine liposomal gel (5.499 ± 2.89 μg·mL<sup>-1</sup>). Brain-targeting experiments showed that the brain-targeting efficiencies of the PEGylated nimodipine liposome gel and R8-modified PEGylated nimodipine liposome gels were 20.44 and 33.45, respectively, suggesting that R8/PEG/Lip-NM-TSG significantly increased the brain-targeting of the drug.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Octa-Arginine-Conjugated Liposomal Nimodipine Incorporated in a Temperature-Responsive Gel for Nasoencephalic Delivery.\",\"authors\":\"Shuai Hong, Changxiu Lin, Junsheng Hu, Jingshu Piao, Ming Guan Piao\",\"doi\":\"10.1021/acs.molpharmaceut.4c00634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nimodipine is the primary clinical drug used to treat cerebral vasospasm following subarachnoid hemorrhage. Currently, tablets have low bioavailability when taken orally, and injections contain ethanol. Therefore, we investigated a new method of nimodipine administration, namely, nasoencephalic administration. Nasal administration of nimodipine was carried out by attaching the cell-penetrating peptide octa-arginine (R8) to liposomes of nimodipine and incorporating it into a temperature-sensitive in situ gel. The prepared liposomes and gels underwent separate evaluations for in vitro characterization. In vitro release exhibited a significant slow-release effect. In vitro toad maxillary cilia model, RPMI 2650 cytotoxicity, and in vivo SD rat pathological histotoxicity experiments showed that all the dosage from the groups had no significant toxicity to toad maxillary cilia, RPMI 2650 cells, and SD rat tissues and organs, and the cilia continued to oscillate up to 694 ± 10.15 min, with the survival rate of the cells being above 85%. A transwell nasal mucosa cell model and an isolated porcine nasal mucosa model were established, and the results showed that the osmolality of the R8-modified nimodipine liposomal gel to nasal mucosal cells and isolated porcine nasal mucosa was 30.41 ± 2.14 and 65.9 ± 7.34 μg/mL, respectively, which was significantly higher than that of the NM-Solution and PEGylated nimodipine liposome gel groups. Animal fluorescence imaging studies revealed that the R8-modified nimodipine liposomal gel displayed increased brain fluorescence intensity compared to the normal liposomal gel. Pharmacokinetic results showed that after transnasal administration, the AUC<sub>(0-∞)</sub> of the R8-modified nimodipine liposomal gel was 11.662 ± 1.97 μg·mL<sup>-1</sup>, which was significantly higher than that of the plain nimodipine liposomal gel (5.499 ± 2.89 μg·mL<sup>-1</sup>). Brain-targeting experiments showed that the brain-targeting efficiencies of the PEGylated nimodipine liposome gel and R8-modified PEGylated nimodipine liposome gels were 20.44 and 33.45, respectively, suggesting that R8/PEG/Lip-NM-TSG significantly increased the brain-targeting of the drug.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c00634\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00634","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Octa-Arginine-Conjugated Liposomal Nimodipine Incorporated in a Temperature-Responsive Gel for Nasoencephalic Delivery.
Nimodipine is the primary clinical drug used to treat cerebral vasospasm following subarachnoid hemorrhage. Currently, tablets have low bioavailability when taken orally, and injections contain ethanol. Therefore, we investigated a new method of nimodipine administration, namely, nasoencephalic administration. Nasal administration of nimodipine was carried out by attaching the cell-penetrating peptide octa-arginine (R8) to liposomes of nimodipine and incorporating it into a temperature-sensitive in situ gel. The prepared liposomes and gels underwent separate evaluations for in vitro characterization. In vitro release exhibited a significant slow-release effect. In vitro toad maxillary cilia model, RPMI 2650 cytotoxicity, and in vivo SD rat pathological histotoxicity experiments showed that all the dosage from the groups had no significant toxicity to toad maxillary cilia, RPMI 2650 cells, and SD rat tissues and organs, and the cilia continued to oscillate up to 694 ± 10.15 min, with the survival rate of the cells being above 85%. A transwell nasal mucosa cell model and an isolated porcine nasal mucosa model were established, and the results showed that the osmolality of the R8-modified nimodipine liposomal gel to nasal mucosal cells and isolated porcine nasal mucosa was 30.41 ± 2.14 and 65.9 ± 7.34 μg/mL, respectively, which was significantly higher than that of the NM-Solution and PEGylated nimodipine liposome gel groups. Animal fluorescence imaging studies revealed that the R8-modified nimodipine liposomal gel displayed increased brain fluorescence intensity compared to the normal liposomal gel. Pharmacokinetic results showed that after transnasal administration, the AUC(0-∞) of the R8-modified nimodipine liposomal gel was 11.662 ± 1.97 μg·mL-1, which was significantly higher than that of the plain nimodipine liposomal gel (5.499 ± 2.89 μg·mL-1). Brain-targeting experiments showed that the brain-targeting efficiencies of the PEGylated nimodipine liposome gel and R8-modified PEGylated nimodipine liposome gels were 20.44 and 33.45, respectively, suggesting that R8/PEG/Lip-NM-TSG significantly increased the brain-targeting of the drug.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.