川崎动力学下二维稀薄气体中的液滴动力学

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Simone Baldassarri , Alexandre Gaudillière , Frank den Hollander , Francesca R. Nardi , Enzo Olivieri , Elisabetta Scoppola
{"title":"川崎动力学下二维稀薄气体中的液滴动力学","authors":"Simone Baldassarri ,&nbsp;Alexandre Gaudillière ,&nbsp;Frank den Hollander ,&nbsp;Francesca R. Nardi ,&nbsp;Enzo Olivieri ,&nbsp;Elisabetta Scoppola","doi":"10.1016/j.spa.2024.104460","DOIUrl":null,"url":null,"abstract":"<div><p>This is the second in a series of three papers in which we study a lattice gas subject to Kawasaki conservative dynamics at inverse temperature <span><math><mrow><mi>β</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> in a large finite box <span><math><mrow><msub><mrow><mi>Λ</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> whose volume depends on <span><math><mi>β</mi></math></span>. Each pair of neighboring particles has a negative <em>binding energy</em> <span><math><mrow><mo>−</mo><mi>U</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>, while each particle has a positive <em>activation energy</em> <span><math><mrow><mi>Δ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The initial configuration is drawn from the grand-canonical ensemble restricted to the set of configurations where all the droplets are subcritical. Our goal is to describe, in the metastable regime <span><math><mrow><mi>Δ</mi><mo>∈</mo><mrow><mo>(</mo><mi>U</mi><mo>,</mo><mn>2</mn><mi>U</mi><mo>)</mo></mrow></mrow></math></span> and in the limit as <span><math><mrow><mi>β</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, how and when the system nucleates, i.e., grows a supercritical droplet somewhere in <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>β</mi></mrow></msub></math></span>. In the first paper we showed that subcritical droplets behave as quasi-random walks. In the present paper we use the results in the first paper to analyze how subcritical droplets form and dissolve on multiple space–time scales when the volume is <em>moderately large</em>, namely, <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>Λ</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>|</mo></mrow><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>Θ</mi><mi>β</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>Δ</mi><mo>&lt;</mo><mi>Θ</mi><mo>&lt;</mo><mn>2</mn><mi>Δ</mi><mo>−</mo><mi>U</mi></mrow></math></span>. In the third paper we consider the setting where the volume is <em>very large</em>, namely, <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>Λ</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>|</mo></mrow><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>Θ</mi><mi>β</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>Δ</mi><mo>&lt;</mo><mi>Θ</mi><mo>&lt;</mo><mi>Γ</mi><mo>−</mo><mrow><mo>(</mo><mn>2</mn><mi>Δ</mi><mo>−</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>Γ</mi></math></span> is the energy of the critical droplet in the local model, i.e., when <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>β</mi></mrow></msub></math></span> has a fixed volume not depending on <span><math><mi>β</mi></math></span> and particles can be created and annihilated at the boundary, and use the results in the first two papers to identify the nucleation time. We will see that in a very large volume critical droplets appear more or less independently in boxes of moderate volume, a phenomenon referred to as <em>homogeneous nucleation</em>. Since Kawasaki dynamics is <em>conservative</em>, i.e., particles move around and interact but are preserved, we need to control non-local effects in the way droplets are formed and dissolved. This is done via a <em>deductive approach</em>: the tube of typical trajectories leading to nucleation is described via a series of events, whose complements have negligible probability, on which the evolution of the gas can be captured by a coarse-grained Markov chain on a space of droplets, which we refer to as <em>droplet dynamics</em>.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"177 ","pages":"Article 104460"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304414924001662/pdfft?md5=f9e5e7b88c062317235179ac8c7125e6&pid=1-s2.0-S0304414924001662-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Droplet dynamics in a two-dimensional rarefied gas under Kawasaki dynamics\",\"authors\":\"Simone Baldassarri ,&nbsp;Alexandre Gaudillière ,&nbsp;Frank den Hollander ,&nbsp;Francesca R. Nardi ,&nbsp;Enzo Olivieri ,&nbsp;Elisabetta Scoppola\",\"doi\":\"10.1016/j.spa.2024.104460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This is the second in a series of three papers in which we study a lattice gas subject to Kawasaki conservative dynamics at inverse temperature <span><math><mrow><mi>β</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> in a large finite box <span><math><mrow><msub><mrow><mi>Λ</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> whose volume depends on <span><math><mi>β</mi></math></span>. Each pair of neighboring particles has a negative <em>binding energy</em> <span><math><mrow><mo>−</mo><mi>U</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>, while each particle has a positive <em>activation energy</em> <span><math><mrow><mi>Δ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The initial configuration is drawn from the grand-canonical ensemble restricted to the set of configurations where all the droplets are subcritical. Our goal is to describe, in the metastable regime <span><math><mrow><mi>Δ</mi><mo>∈</mo><mrow><mo>(</mo><mi>U</mi><mo>,</mo><mn>2</mn><mi>U</mi><mo>)</mo></mrow></mrow></math></span> and in the limit as <span><math><mrow><mi>β</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, how and when the system nucleates, i.e., grows a supercritical droplet somewhere in <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>β</mi></mrow></msub></math></span>. In the first paper we showed that subcritical droplets behave as quasi-random walks. In the present paper we use the results in the first paper to analyze how subcritical droplets form and dissolve on multiple space–time scales when the volume is <em>moderately large</em>, namely, <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>Λ</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>|</mo></mrow><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>Θ</mi><mi>β</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>Δ</mi><mo>&lt;</mo><mi>Θ</mi><mo>&lt;</mo><mn>2</mn><mi>Δ</mi><mo>−</mo><mi>U</mi></mrow></math></span>. In the third paper we consider the setting where the volume is <em>very large</em>, namely, <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>Λ</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>|</mo></mrow><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>Θ</mi><mi>β</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>Δ</mi><mo>&lt;</mo><mi>Θ</mi><mo>&lt;</mo><mi>Γ</mi><mo>−</mo><mrow><mo>(</mo><mn>2</mn><mi>Δ</mi><mo>−</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>Γ</mi></math></span> is the energy of the critical droplet in the local model, i.e., when <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>β</mi></mrow></msub></math></span> has a fixed volume not depending on <span><math><mi>β</mi></math></span> and particles can be created and annihilated at the boundary, and use the results in the first two papers to identify the nucleation time. We will see that in a very large volume critical droplets appear more or less independently in boxes of moderate volume, a phenomenon referred to as <em>homogeneous nucleation</em>. Since Kawasaki dynamics is <em>conservative</em>, i.e., particles move around and interact but are preserved, we need to control non-local effects in the way droplets are formed and dissolved. This is done via a <em>deductive approach</em>: the tube of typical trajectories leading to nucleation is described via a series of events, whose complements have negligible probability, on which the evolution of the gas can be captured by a coarse-grained Markov chain on a space of droplets, which we refer to as <em>droplet dynamics</em>.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"177 \",\"pages\":\"Article 104460\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001662/pdfft?md5=f9e5e7b88c062317235179ac8c7125e6&pid=1-s2.0-S0304414924001662-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001662\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001662","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文是三篇论文系列中的第二篇,我们研究了在反温度β>0下,在一个体积取决于β的大有限盒子Λβ⊂Z2中的晶格气体的川崎保守动力学。每对相邻粒子都有负的结合能-U<0,而每个粒子都有正的活化能Δ>0。初始构型取自大规范集合,仅限于所有液滴都处于亚临界状态的构型集。我们的目标是描述在Δ∈(U,2U)和β→∞的极限条件下,系统如何以及何时成核,即在Λβ的某处长出超临界液滴。在第一篇论文中,我们证明了亚临界液滴的行为类似于随机漫步。在本文中,我们利用第一篇论文中的结果,分析了当体积中等大时,即|Λβ|=eΘβ,Δ<Θ<2Δ-U,亚临界液滴如何在多个时空尺度上形成和溶解。在第三篇论文中,我们考虑了体积非常大的情况,即|Λβ|=eΘβ with Δ<Θ<Γ-(2Δ-U),其中Γ是局部模型中临界液滴的能量,即当Λβ具有不依赖于β的固定体积时,粒子可以在边界上产生和湮灭,并利用前两篇论文的结果来确定成核时间。我们将看到,在非常大的体积中,临界液滴或多或少地独立出现在中等体积的盒子中,这种现象被称为均匀成核。由于川崎动力学是保守的,即粒子会四处移动和相互作用,但会保持不变,因此我们需要控制液滴形成和溶解过程中的非局部效应。这可以通过演绎法来实现:通过一系列事件来描述导致成核的典型轨迹管,这些事件的互补概率可以忽略不计,气体的演化可以通过液滴空间上的粗粒度马尔可夫链来捕捉,我们称之为液滴动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Droplet dynamics in a two-dimensional rarefied gas under Kawasaki dynamics

This is the second in a series of three papers in which we study a lattice gas subject to Kawasaki conservative dynamics at inverse temperature β>0 in a large finite box ΛβZ2 whose volume depends on β. Each pair of neighboring particles has a negative binding energy U<0, while each particle has a positive activation energy Δ>0. The initial configuration is drawn from the grand-canonical ensemble restricted to the set of configurations where all the droplets are subcritical. Our goal is to describe, in the metastable regime Δ(U,2U) and in the limit as β, how and when the system nucleates, i.e., grows a supercritical droplet somewhere in Λβ. In the first paper we showed that subcritical droplets behave as quasi-random walks. In the present paper we use the results in the first paper to analyze how subcritical droplets form and dissolve on multiple space–time scales when the volume is moderately large, namely, |Λβ|=eΘβ with Δ<Θ<2ΔU. In the third paper we consider the setting where the volume is very large, namely, |Λβ|=eΘβ with Δ<Θ<Γ(2ΔU), where Γ is the energy of the critical droplet in the local model, i.e., when Λβ has a fixed volume not depending on β and particles can be created and annihilated at the boundary, and use the results in the first two papers to identify the nucleation time. We will see that in a very large volume critical droplets appear more or less independently in boxes of moderate volume, a phenomenon referred to as homogeneous nucleation. Since Kawasaki dynamics is conservative, i.e., particles move around and interact but are preserved, we need to control non-local effects in the way droplets are formed and dissolved. This is done via a deductive approach: the tube of typical trajectories leading to nucleation is described via a series of events, whose complements have negligible probability, on which the evolution of the gas can be captured by a coarse-grained Markov chain on a space of droplets, which we refer to as droplet dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信