霍尔德空间中随机三维欧拉方程的固定解

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Lin Lü, Rongchan Zhu
{"title":"霍尔德空间中随机三维欧拉方程的固定解","authors":"Lin Lü,&nbsp;Rongchan Zhu","doi":"10.1016/j.spa.2024.104465","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the existence of infinitely many global and stationary solutions in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>ϑ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> space for some <span><math><mrow><mi>ϑ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> to the three-dimensional Euler equations driven by an additive stochastic forcing. The result is based on a new stochastic version of the convex integration method, incorporating the stochastic convex integration method developed in Hofmanová et al. (2022) and pathwise estimates to derive uniform moment estimates independent of time.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"177 ","pages":"Article 104465"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary solutions to stochastic 3D Euler equations in Hölder space\",\"authors\":\"Lin Lü,&nbsp;Rongchan Zhu\",\"doi\":\"10.1016/j.spa.2024.104465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the existence of infinitely many global and stationary solutions in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>ϑ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> space for some <span><math><mrow><mi>ϑ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> to the three-dimensional Euler equations driven by an additive stochastic forcing. The result is based on a new stochastic version of the convex integration method, incorporating the stochastic convex integration method developed in Hofmanová et al. (2022) and pathwise estimates to derive uniform moment estimates independent of time.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"177 \",\"pages\":\"Article 104465\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001716\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001716","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在某些ϑ>0条件下,由加性随机强迫驱动的三维欧拉方程在C(R,Cϑ)空间中存在无限多个全局和静止解。该结果基于一种新的随机版凸积分法,结合了霍夫曼诺娃等人(2022)开发的随机凸积分法和路径估计法,得出了与时间无关的均匀矩估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary solutions to stochastic 3D Euler equations in Hölder space

We establish the existence of infinitely many global and stationary solutions in C(R,Cϑ) space for some ϑ>0 to the three-dimensional Euler equations driven by an additive stochastic forcing. The result is based on a new stochastic version of the convex integration method, incorporating the stochastic convex integration method developed in Hofmanová et al. (2022) and pathwise estimates to derive uniform moment estimates independent of time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信