{"title":"论维塔利覆盖定理的逻辑和计算特性","authors":"Dag Normann , Sam Sanders","doi":"10.1016/j.apal.2024.103505","DOIUrl":null,"url":null,"abstract":"<div><p>We study a version of the Vitali covering theorem, which we call <span><math><mtext>WHBU</mtext></math></span> and which is a direct weakening of the Heine-Borel theorem for uncountable coverings, called <span><math><mtext>HBU</mtext></math></span>. We show that <span><math><mtext>WHBU</mtext></math></span> is central to measure theory by deriving it from various central approximation results related to <em>Littlewood's three principles</em>. A natural question is then <em>how hard</em> it is to prove <span><math><mtext>WHBU</mtext></math></span> (in the sense of Kohlenbach's <em>higher-order Reverse Mathematics</em>), and <em>how hard</em> it is to compute the objects claimed to exist by <span><math><mtext>WHBU</mtext></math></span> (in the sense of Kleene's computation schemes S1-S9). The answer to both questions is ‘extremely hard’, as follows: on one hand, in terms of the usual scale of (conventional) comprehension axioms, <span><math><mtext>WHBU</mtext></math></span> is only provable using Kleene's <span><math><msup><mrow><mo>∃</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>, which implies full second-order arithmetic. On the other hand, realisers (aka witnessing functionals) for <span><math><mtext>WHBU</mtext></math></span>, so-called Λ-functionals, are computable from Kleene's <span><math><msup><mrow><mo>∃</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>, but not from weaker comprehension functionals. Despite this hardness, we show that <span><math><mtext>WHBU</mtext></math></span>, and certain Λ-functionals, behave much better than <span><math><mtext>HBU</mtext></math></span> and the associated class of realisers, called Θ-functionals. In particular, we identify a specific Λ-functional called <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mtext>S</mtext></mrow></msub></math></span> which adds no computational power to the <em>Suslin functional</em>, in contrast to Θ-functionals. Finally, we introduce a hierarchy involving Θ-functionals and <span><math><mtext>HBU</mtext></math></span>.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 1","pages":"Article 103505"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016800722400109X/pdfft?md5=b0cd166fc40894dfc35586ee4d3fca4b&pid=1-s2.0-S016800722400109X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the logical and computational properties of the Vitali covering theorem\",\"authors\":\"Dag Normann , Sam Sanders\",\"doi\":\"10.1016/j.apal.2024.103505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a version of the Vitali covering theorem, which we call <span><math><mtext>WHBU</mtext></math></span> and which is a direct weakening of the Heine-Borel theorem for uncountable coverings, called <span><math><mtext>HBU</mtext></math></span>. We show that <span><math><mtext>WHBU</mtext></math></span> is central to measure theory by deriving it from various central approximation results related to <em>Littlewood's three principles</em>. A natural question is then <em>how hard</em> it is to prove <span><math><mtext>WHBU</mtext></math></span> (in the sense of Kohlenbach's <em>higher-order Reverse Mathematics</em>), and <em>how hard</em> it is to compute the objects claimed to exist by <span><math><mtext>WHBU</mtext></math></span> (in the sense of Kleene's computation schemes S1-S9). The answer to both questions is ‘extremely hard’, as follows: on one hand, in terms of the usual scale of (conventional) comprehension axioms, <span><math><mtext>WHBU</mtext></math></span> is only provable using Kleene's <span><math><msup><mrow><mo>∃</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>, which implies full second-order arithmetic. On the other hand, realisers (aka witnessing functionals) for <span><math><mtext>WHBU</mtext></math></span>, so-called Λ-functionals, are computable from Kleene's <span><math><msup><mrow><mo>∃</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>, but not from weaker comprehension functionals. Despite this hardness, we show that <span><math><mtext>WHBU</mtext></math></span>, and certain Λ-functionals, behave much better than <span><math><mtext>HBU</mtext></math></span> and the associated class of realisers, called Θ-functionals. In particular, we identify a specific Λ-functional called <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mtext>S</mtext></mrow></msub></math></span> which adds no computational power to the <em>Suslin functional</em>, in contrast to Θ-functionals. Finally, we introduce a hierarchy involving Θ-functionals and <span><math><mtext>HBU</mtext></math></span>.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 1\",\"pages\":\"Article 103505\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016800722400109X/pdfft?md5=b0cd166fc40894dfc35586ee4d3fca4b&pid=1-s2.0-S016800722400109X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016800722400109X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722400109X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
On the logical and computational properties of the Vitali covering theorem
We study a version of the Vitali covering theorem, which we call and which is a direct weakening of the Heine-Borel theorem for uncountable coverings, called . We show that is central to measure theory by deriving it from various central approximation results related to Littlewood's three principles. A natural question is then how hard it is to prove (in the sense of Kohlenbach's higher-order Reverse Mathematics), and how hard it is to compute the objects claimed to exist by (in the sense of Kleene's computation schemes S1-S9). The answer to both questions is ‘extremely hard’, as follows: on one hand, in terms of the usual scale of (conventional) comprehension axioms, is only provable using Kleene's , which implies full second-order arithmetic. On the other hand, realisers (aka witnessing functionals) for , so-called Λ-functionals, are computable from Kleene's , but not from weaker comprehension functionals. Despite this hardness, we show that , and certain Λ-functionals, behave much better than and the associated class of realisers, called Θ-functionals. In particular, we identify a specific Λ-functional called which adds no computational power to the Suslin functional, in contrast to Θ-functionals. Finally, we introduce a hierarchy involving Θ-functionals and .
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.