论维塔利覆盖定理的逻辑和计算特性

IF 0.6 2区 数学 Q2 LOGIC
Dag Normann , Sam Sanders
{"title":"论维塔利覆盖定理的逻辑和计算特性","authors":"Dag Normann ,&nbsp;Sam Sanders","doi":"10.1016/j.apal.2024.103505","DOIUrl":null,"url":null,"abstract":"<div><p>We study a version of the Vitali covering theorem, which we call <span><math><mtext>WHBU</mtext></math></span> and which is a direct weakening of the Heine-Borel theorem for uncountable coverings, called <span><math><mtext>HBU</mtext></math></span>. We show that <span><math><mtext>WHBU</mtext></math></span> is central to measure theory by deriving it from various central approximation results related to <em>Littlewood's three principles</em>. A natural question is then <em>how hard</em> it is to prove <span><math><mtext>WHBU</mtext></math></span> (in the sense of Kohlenbach's <em>higher-order Reverse Mathematics</em>), and <em>how hard</em> it is to compute the objects claimed to exist by <span><math><mtext>WHBU</mtext></math></span> (in the sense of Kleene's computation schemes S1-S9). The answer to both questions is ‘extremely hard’, as follows: on one hand, in terms of the usual scale of (conventional) comprehension axioms, <span><math><mtext>WHBU</mtext></math></span> is only provable using Kleene's <span><math><msup><mrow><mo>∃</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>, which implies full second-order arithmetic. On the other hand, realisers (aka witnessing functionals) for <span><math><mtext>WHBU</mtext></math></span>, so-called Λ-functionals, are computable from Kleene's <span><math><msup><mrow><mo>∃</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>, but not from weaker comprehension functionals. Despite this hardness, we show that <span><math><mtext>WHBU</mtext></math></span>, and certain Λ-functionals, behave much better than <span><math><mtext>HBU</mtext></math></span> and the associated class of realisers, called Θ-functionals. In particular, we identify a specific Λ-functional called <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mtext>S</mtext></mrow></msub></math></span> which adds no computational power to the <em>Suslin functional</em>, in contrast to Θ-functionals. Finally, we introduce a hierarchy involving Θ-functionals and <span><math><mtext>HBU</mtext></math></span>.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 1","pages":"Article 103505"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016800722400109X/pdfft?md5=b0cd166fc40894dfc35586ee4d3fca4b&pid=1-s2.0-S016800722400109X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the logical and computational properties of the Vitali covering theorem\",\"authors\":\"Dag Normann ,&nbsp;Sam Sanders\",\"doi\":\"10.1016/j.apal.2024.103505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a version of the Vitali covering theorem, which we call <span><math><mtext>WHBU</mtext></math></span> and which is a direct weakening of the Heine-Borel theorem for uncountable coverings, called <span><math><mtext>HBU</mtext></math></span>. We show that <span><math><mtext>WHBU</mtext></math></span> is central to measure theory by deriving it from various central approximation results related to <em>Littlewood's three principles</em>. A natural question is then <em>how hard</em> it is to prove <span><math><mtext>WHBU</mtext></math></span> (in the sense of Kohlenbach's <em>higher-order Reverse Mathematics</em>), and <em>how hard</em> it is to compute the objects claimed to exist by <span><math><mtext>WHBU</mtext></math></span> (in the sense of Kleene's computation schemes S1-S9). The answer to both questions is ‘extremely hard’, as follows: on one hand, in terms of the usual scale of (conventional) comprehension axioms, <span><math><mtext>WHBU</mtext></math></span> is only provable using Kleene's <span><math><msup><mrow><mo>∃</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>, which implies full second-order arithmetic. On the other hand, realisers (aka witnessing functionals) for <span><math><mtext>WHBU</mtext></math></span>, so-called Λ-functionals, are computable from Kleene's <span><math><msup><mrow><mo>∃</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>, but not from weaker comprehension functionals. Despite this hardness, we show that <span><math><mtext>WHBU</mtext></math></span>, and certain Λ-functionals, behave much better than <span><math><mtext>HBU</mtext></math></span> and the associated class of realisers, called Θ-functionals. In particular, we identify a specific Λ-functional called <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mtext>S</mtext></mrow></msub></math></span> which adds no computational power to the <em>Suslin functional</em>, in contrast to Θ-functionals. Finally, we introduce a hierarchy involving Θ-functionals and <span><math><mtext>HBU</mtext></math></span>.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 1\",\"pages\":\"Article 103505\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016800722400109X/pdfft?md5=b0cd166fc40894dfc35586ee4d3fca4b&pid=1-s2.0-S016800722400109X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016800722400109X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722400109X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了维塔利覆盖定理的一个版本,我们称之为 WHBU,它是不可数覆盖的海涅-伯勒尔定理(Heine-Borel theorem)的直接弱化,称之为 HBU。我们从与利特尔伍德三大原则相关的各种中心逼近结果中推导出 WHBU,从而证明 WHBU 是度量理论的核心。那么,一个自然的问题是,证明 WHBU 有多难(在科伦巴赫的高阶反演数学的意义上),以及计算 WHBU 声称存在的对象有多难(在克莱因的计算方案 S1-S9 的意义上)。这两个问题的答案都是 "极难",具体如下:一方面,就(传统)理解公理的通常尺度而言,只有使用克莱因的 ∃3才能证明 WHBU,这意味着完全的二阶算术。另一方面,WHBU 的实现者(又称见证函数),即所谓的Λ-函数,可以用克莱因的∃3 计算,但不能用较弱的理解函数计算。尽管存在这种困难,我们还是证明了 WHBU 和某些 Λ 函数的表现比 HBU 和相关的实现者(称为 Θ 函数)要好得多。特别是,我们发现了一种称为ΛS的特定Λ函数,与Θ函数相比,它不会增加苏斯林函数的计算能力。最后,我们介绍了涉及 Θ 函数和 HBU 的层次结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the logical and computational properties of the Vitali covering theorem

We study a version of the Vitali covering theorem, which we call WHBU and which is a direct weakening of the Heine-Borel theorem for uncountable coverings, called HBU. We show that WHBU is central to measure theory by deriving it from various central approximation results related to Littlewood's three principles. A natural question is then how hard it is to prove WHBU (in the sense of Kohlenbach's higher-order Reverse Mathematics), and how hard it is to compute the objects claimed to exist by WHBU (in the sense of Kleene's computation schemes S1-S9). The answer to both questions is ‘extremely hard’, as follows: on one hand, in terms of the usual scale of (conventional) comprehension axioms, WHBU is only provable using Kleene's 3, which implies full second-order arithmetic. On the other hand, realisers (aka witnessing functionals) for WHBU, so-called Λ-functionals, are computable from Kleene's 3, but not from weaker comprehension functionals. Despite this hardness, we show that WHBU, and certain Λ-functionals, behave much better than HBU and the associated class of realisers, called Θ-functionals. In particular, we identify a specific Λ-functional called ΛS which adds no computational power to the Suslin functional, in contrast to Θ-functionals. Finally, we introduce a hierarchy involving Θ-functionals and HBU.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信