{"title":"基于图像的虚拟试穿:保真和简化","authors":"Tasin Islam, Alina Miron, Xiaohui Liu, Yongmin Li","doi":"10.1016/j.image.2024.117189","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a novel image-based virtual try-on model designed to replace a candidate’s garment with a desired target item. The proposed model comprises three modules: segmentation, garment warping, and candidate-clothing fusion. Previous methods have shown limitations in cases involving significant differences between the original and target clothing, as well as substantial overlapping of body parts. Our model addresses these limitations by employing two key strategies. Firstly, it utilises a candidate representation based on an RGB skeleton image to enhance spatial relationships among body parts, resulting in robust segmentation and improved occlusion handling. Secondly, truncated U-Net is employed in both the segmentation and warping modules, enhancing segmentation performance and accelerating the try-on process. The warping module leverages an efficient affine transform for ease of training. Comparative evaluations against state-of-the-art models demonstrate the competitive performance of our proposed model across various scenarios, particularly excelling in handling occlusion cases and significant differences in clothing cases. This research presents a promising solution for image-based virtual try-on, advancing the field by overcoming key limitations and achieving superior performance.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"129 ","pages":"Article 117189"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0923596524000900/pdfft?md5=d7b74bcca8966cd1d3e0e38fa30c8482&pid=1-s2.0-S0923596524000900-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Image-based virtual try-on: Fidelity and simplification\",\"authors\":\"Tasin Islam, Alina Miron, Xiaohui Liu, Yongmin Li\",\"doi\":\"10.1016/j.image.2024.117189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a novel image-based virtual try-on model designed to replace a candidate’s garment with a desired target item. The proposed model comprises three modules: segmentation, garment warping, and candidate-clothing fusion. Previous methods have shown limitations in cases involving significant differences between the original and target clothing, as well as substantial overlapping of body parts. Our model addresses these limitations by employing two key strategies. Firstly, it utilises a candidate representation based on an RGB skeleton image to enhance spatial relationships among body parts, resulting in robust segmentation and improved occlusion handling. Secondly, truncated U-Net is employed in both the segmentation and warping modules, enhancing segmentation performance and accelerating the try-on process. The warping module leverages an efficient affine transform for ease of training. Comparative evaluations against state-of-the-art models demonstrate the competitive performance of our proposed model across various scenarios, particularly excelling in handling occlusion cases and significant differences in clothing cases. This research presents a promising solution for image-based virtual try-on, advancing the field by overcoming key limitations and achieving superior performance.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"129 \",\"pages\":\"Article 117189\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000900/pdfft?md5=d7b74bcca8966cd1d3e0e38fa30c8482&pid=1-s2.0-S0923596524000900-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000900\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000900","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Image-based virtual try-on: Fidelity and simplification
We introduce a novel image-based virtual try-on model designed to replace a candidate’s garment with a desired target item. The proposed model comprises three modules: segmentation, garment warping, and candidate-clothing fusion. Previous methods have shown limitations in cases involving significant differences between the original and target clothing, as well as substantial overlapping of body parts. Our model addresses these limitations by employing two key strategies. Firstly, it utilises a candidate representation based on an RGB skeleton image to enhance spatial relationships among body parts, resulting in robust segmentation and improved occlusion handling. Secondly, truncated U-Net is employed in both the segmentation and warping modules, enhancing segmentation performance and accelerating the try-on process. The warping module leverages an efficient affine transform for ease of training. Comparative evaluations against state-of-the-art models demonstrate the competitive performance of our proposed model across various scenarios, particularly excelling in handling occlusion cases and significant differences in clothing cases. This research presents a promising solution for image-based virtual try-on, advancing the field by overcoming key limitations and achieving superior performance.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.