{"title":"带有氯霉素装饰配体的新型钌络合物可增强 DNA 损伤和抗增殖活性","authors":"Alberto Gobbo , Feihong Chen , Stefano Zacchini , Shaohua Gou , Fabio Marchetti","doi":"10.1016/j.jinorgbio.2024.112703","DOIUrl":null,"url":null,"abstract":"<div><p>Triphenylphosphine substitution reactions of [RuCl(PPh<sub>3</sub>)<sub>2</sub>(tpm)]Cl, <strong>1</strong>, featuring tris(pyrazolyl)methane (tpm) as ligand, with the chlorambucil-decorated pyridine ligand <strong>Py</strong><sup><strong>CA</strong></sup>, 3-aminopyridine (<strong>Py</strong><sup><strong>NH2</strong></sup>) and 4-pyridinemethanol (<strong>Py</strong><sup><strong>OH</strong></sup>) afforded the corresponding pyridine complexes <strong>2–4</strong> in high yields. <strong>Py</strong><sup><strong>CA</strong></sup> was preliminarily obtained <em>via</em> esterification of 4-pyridinemethanol with chlorambucil. The new compounds <strong>Py</strong><sup><strong>CA</strong></sup> and <strong>2–3</strong> were characterized by IR and multinuclear NMR spectroscopy. Additionally, the structure of <strong>3</strong> was ascertained by single crystal X-ray diffraction. The <em>in vitro</em> anti-proliferative activity of <strong>2–4</strong> and <strong>Py</strong><sup><strong>CA</strong></sup> was determined against a panel of cancer cell lines, outlining <strong>2</strong> as the most performing compound. Targeted studies were subsequently undertaken using <strong>2</strong> to elucidate mechanistic aspects, including the assessment of ruthenium cellular uptake, cell cycle arrest, production of reactive oxygen species (ROS), western blotting and DNA damage (comet test). Overall, data highlight that the anticancer activity provided by <strong>2</strong> primarily affects the mitochondria pathway with a potential additional contribution from DNA damage.</p></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0162013424002277/pdfft?md5=297e1e04af4ffdab05ee142877aade6f&pid=1-s2.0-S0162013424002277-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced DNA damage and anti-proliferative activity of a novel ruthenium complex with a chlorambucil-decorated ligand\",\"authors\":\"Alberto Gobbo , Feihong Chen , Stefano Zacchini , Shaohua Gou , Fabio Marchetti\",\"doi\":\"10.1016/j.jinorgbio.2024.112703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Triphenylphosphine substitution reactions of [RuCl(PPh<sub>3</sub>)<sub>2</sub>(tpm)]Cl, <strong>1</strong>, featuring tris(pyrazolyl)methane (tpm) as ligand, with the chlorambucil-decorated pyridine ligand <strong>Py</strong><sup><strong>CA</strong></sup>, 3-aminopyridine (<strong>Py</strong><sup><strong>NH2</strong></sup>) and 4-pyridinemethanol (<strong>Py</strong><sup><strong>OH</strong></sup>) afforded the corresponding pyridine complexes <strong>2–4</strong> in high yields. <strong>Py</strong><sup><strong>CA</strong></sup> was preliminarily obtained <em>via</em> esterification of 4-pyridinemethanol with chlorambucil. The new compounds <strong>Py</strong><sup><strong>CA</strong></sup> and <strong>2–3</strong> were characterized by IR and multinuclear NMR spectroscopy. Additionally, the structure of <strong>3</strong> was ascertained by single crystal X-ray diffraction. The <em>in vitro</em> anti-proliferative activity of <strong>2–4</strong> and <strong>Py</strong><sup><strong>CA</strong></sup> was determined against a panel of cancer cell lines, outlining <strong>2</strong> as the most performing compound. Targeted studies were subsequently undertaken using <strong>2</strong> to elucidate mechanistic aspects, including the assessment of ruthenium cellular uptake, cell cycle arrest, production of reactive oxygen species (ROS), western blotting and DNA damage (comet test). Overall, data highlight that the anticancer activity provided by <strong>2</strong> primarily affects the mitochondria pathway with a potential additional contribution from DNA damage.</p></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0162013424002277/pdfft?md5=297e1e04af4ffdab05ee142877aade6f&pid=1-s2.0-S0162013424002277-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013424002277\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424002277","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Enhanced DNA damage and anti-proliferative activity of a novel ruthenium complex with a chlorambucil-decorated ligand
Triphenylphosphine substitution reactions of [RuCl(PPh3)2(tpm)]Cl, 1, featuring tris(pyrazolyl)methane (tpm) as ligand, with the chlorambucil-decorated pyridine ligand PyCA, 3-aminopyridine (PyNH2) and 4-pyridinemethanol (PyOH) afforded the corresponding pyridine complexes 2–4 in high yields. PyCA was preliminarily obtained via esterification of 4-pyridinemethanol with chlorambucil. The new compounds PyCA and 2–3 were characterized by IR and multinuclear NMR spectroscopy. Additionally, the structure of 3 was ascertained by single crystal X-ray diffraction. The in vitro anti-proliferative activity of 2–4 and PyCA was determined against a panel of cancer cell lines, outlining 2 as the most performing compound. Targeted studies were subsequently undertaken using 2 to elucidate mechanistic aspects, including the assessment of ruthenium cellular uptake, cell cycle arrest, production of reactive oxygen species (ROS), western blotting and DNA damage (comet test). Overall, data highlight that the anticancer activity provided by 2 primarily affects the mitochondria pathway with a potential additional contribution from DNA damage.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.