{"title":"利用索引方法、多元分析和地理信息系统技术对阿尔及利亚 K'sob 谷灌溉水质进行水化学特征描述和评估","authors":"","doi":"10.1016/j.jafrearsci.2024.105385","DOIUrl":null,"url":null,"abstract":"<div><p>Irrigation plays a vital role in addressing increasing need for food production and promoting economic advancement. To meet the demands for food supply and economic progress, it is essential to underscore the significance of assessing water quality in dry regions. The current study was carried out to evaluate and predict the suitability of water quality for agricultural use in the K'sob valley in the M'sila region (Northeast Algeria). A combination of irrigation water quality indices (IWQIs), Geographic Information System (GIS) analysis and multivariate statistical methods were used for this purpose. Several physicochemical parameters, such as temperature (T°), hydrogen ion concentration (pH), electrical conductivity (EC), total dissolved solids (TDS), turbidity (Turb), chemical oxygen demand (COD), Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup>, HCO<sub>3</sub><sup>−</sup>, Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, NO<sub>3</sub><sup>−</sup>, NO<sub>2</sub><sup>−</sup>, NH<sub>4</sub><sup>+</sup>, PO<sub>4</sub><sup>−</sup> and SiO<sub>2</sub><sup>2+</sup> were all measured from 40 samples collected at ten surface water locations during four seasons. The concentrations of the main cation and anion were shown as follows: Na<sup>+</sup>>Ca<sup>2+</sup>> K<sup>+</sup> > Mg<sup>2+</sup>, and SO<sub>4</sub><sup>2−</sup> > HCO<sub>3</sub><sup>−</sup> > Cl<sup>−</sup> > NO<sub>3</sub><sup>−</sup> indicating mixed Na-Cl-K or Na-SO<sub>4</sub> water facies. Significant seasonal variation for each parameter (T, pH, Turbidity, Salinity, COD, NH<sub>4</sub><sup>+</sup>, Cl<sup>−</sup>, SO<sub>4</sub><sup>−</sup>, and NO<sub>2</sub><sup>−</sup>) was reported (p < 0.05). Additionally, a significant spatial variation (p < 0.05) was observed among different stations for the parameters: TDS, EC, Ca<sup>2+</sup>, Na<sup>+</sup>, HCO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>−</sup>, NO<sub>3</sub><sup>−</sup>, and PO<sub>4</sub><sup>3−</sup> (p < 0.05). The irrigation water quality index (IWQI), sodium adsorption ratio (SAR), sodium percentage (Na%), Kelly index (KI), and permeability index (PI) had values varying between 28.1 and 56.8, 5.65 and 12.45, 75 and 87, 2.61 and 6.54 and 83, and 97, respectively, and a significant seasonal effect was recorded. According to the Wilcox diagram, 70% of samples were unsuitable for irrigation, while 30% of samples were questionable. The IWQI map revealed that 50% of the samples fell within the very poor category for irrigation, while 20% and 30% of the samples were inside the poor and unsuitable categories, respectively. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) of K'SobValley water revealed three different categories of water based on elemental composition and seasonal variations. The results obtained in this study can be valuable for surface water management. Furthermore, the developed methodology can serve as a useful tool for identifying critical hydrogeochemical components in arid and semi-arid environments related to surface water.</p></div>","PeriodicalId":14874,"journal":{"name":"Journal of African Earth Sciences","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrochemical characterization and evaluation of irrigation water quality using indexing approaches, multivariate analysis, and GIS techniques in K'sob Valley, Algeria\",\"authors\":\"\",\"doi\":\"10.1016/j.jafrearsci.2024.105385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Irrigation plays a vital role in addressing increasing need for food production and promoting economic advancement. To meet the demands for food supply and economic progress, it is essential to underscore the significance of assessing water quality in dry regions. The current study was carried out to evaluate and predict the suitability of water quality for agricultural use in the K'sob valley in the M'sila region (Northeast Algeria). A combination of irrigation water quality indices (IWQIs), Geographic Information System (GIS) analysis and multivariate statistical methods were used for this purpose. Several physicochemical parameters, such as temperature (T°), hydrogen ion concentration (pH), electrical conductivity (EC), total dissolved solids (TDS), turbidity (Turb), chemical oxygen demand (COD), Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup>, HCO<sub>3</sub><sup>−</sup>, Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, NO<sub>3</sub><sup>−</sup>, NO<sub>2</sub><sup>−</sup>, NH<sub>4</sub><sup>+</sup>, PO<sub>4</sub><sup>−</sup> and SiO<sub>2</sub><sup>2+</sup> were all measured from 40 samples collected at ten surface water locations during four seasons. The concentrations of the main cation and anion were shown as follows: Na<sup>+</sup>>Ca<sup>2+</sup>> K<sup>+</sup> > Mg<sup>2+</sup>, and SO<sub>4</sub><sup>2−</sup> > HCO<sub>3</sub><sup>−</sup> > Cl<sup>−</sup> > NO<sub>3</sub><sup>−</sup> indicating mixed Na-Cl-K or Na-SO<sub>4</sub> water facies. Significant seasonal variation for each parameter (T, pH, Turbidity, Salinity, COD, NH<sub>4</sub><sup>+</sup>, Cl<sup>−</sup>, SO<sub>4</sub><sup>−</sup>, and NO<sub>2</sub><sup>−</sup>) was reported (p < 0.05). Additionally, a significant spatial variation (p < 0.05) was observed among different stations for the parameters: TDS, EC, Ca<sup>2+</sup>, Na<sup>+</sup>, HCO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>−</sup>, NO<sub>3</sub><sup>−</sup>, and PO<sub>4</sub><sup>3−</sup> (p < 0.05). The irrigation water quality index (IWQI), sodium adsorption ratio (SAR), sodium percentage (Na%), Kelly index (KI), and permeability index (PI) had values varying between 28.1 and 56.8, 5.65 and 12.45, 75 and 87, 2.61 and 6.54 and 83, and 97, respectively, and a significant seasonal effect was recorded. According to the Wilcox diagram, 70% of samples were unsuitable for irrigation, while 30% of samples were questionable. The IWQI map revealed that 50% of the samples fell within the very poor category for irrigation, while 20% and 30% of the samples were inside the poor and unsuitable categories, respectively. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) of K'SobValley water revealed three different categories of water based on elemental composition and seasonal variations. The results obtained in this study can be valuable for surface water management. Furthermore, the developed methodology can serve as a useful tool for identifying critical hydrogeochemical components in arid and semi-arid environments related to surface water.</p></div>\",\"PeriodicalId\":14874,\"journal\":{\"name\":\"Journal of African Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of African Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1464343X24002188\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of African Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464343X24002188","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydrochemical characterization and evaluation of irrigation water quality using indexing approaches, multivariate analysis, and GIS techniques in K'sob Valley, Algeria
Irrigation plays a vital role in addressing increasing need for food production and promoting economic advancement. To meet the demands for food supply and economic progress, it is essential to underscore the significance of assessing water quality in dry regions. The current study was carried out to evaluate and predict the suitability of water quality for agricultural use in the K'sob valley in the M'sila region (Northeast Algeria). A combination of irrigation water quality indices (IWQIs), Geographic Information System (GIS) analysis and multivariate statistical methods were used for this purpose. Several physicochemical parameters, such as temperature (T°), hydrogen ion concentration (pH), electrical conductivity (EC), total dissolved solids (TDS), turbidity (Turb), chemical oxygen demand (COD), Ca2+, Mg2+, Na+, K+, HCO3−, Cl−, SO42−, NO3−, NO2−, NH4+, PO4− and SiO22+ were all measured from 40 samples collected at ten surface water locations during four seasons. The concentrations of the main cation and anion were shown as follows: Na+>Ca2+> K+ > Mg2+, and SO42− > HCO3− > Cl− > NO3− indicating mixed Na-Cl-K or Na-SO4 water facies. Significant seasonal variation for each parameter (T, pH, Turbidity, Salinity, COD, NH4+, Cl−, SO4−, and NO2−) was reported (p < 0.05). Additionally, a significant spatial variation (p < 0.05) was observed among different stations for the parameters: TDS, EC, Ca2+, Na+, HCO3−, SO4−, NO3−, and PO43− (p < 0.05). The irrigation water quality index (IWQI), sodium adsorption ratio (SAR), sodium percentage (Na%), Kelly index (KI), and permeability index (PI) had values varying between 28.1 and 56.8, 5.65 and 12.45, 75 and 87, 2.61 and 6.54 and 83, and 97, respectively, and a significant seasonal effect was recorded. According to the Wilcox diagram, 70% of samples were unsuitable for irrigation, while 30% of samples were questionable. The IWQI map revealed that 50% of the samples fell within the very poor category for irrigation, while 20% and 30% of the samples were inside the poor and unsuitable categories, respectively. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) of K'SobValley water revealed three different categories of water based on elemental composition and seasonal variations. The results obtained in this study can be valuable for surface water management. Furthermore, the developed methodology can serve as a useful tool for identifying critical hydrogeochemical components in arid and semi-arid environments related to surface water.
期刊介绍:
The Journal of African Earth Sciences sees itself as the prime geological journal for all aspects of the Earth Sciences about the African plate. Papers dealing with peripheral areas are welcome if they demonstrate a tight link with Africa.
The Journal publishes high quality, peer-reviewed scientific papers. It is devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be considered. Papers must have international appeal and should present work of more regional than local significance and dealing with well identified and justified scientific questions. Specialised technical papers, analytical or exploration reports must be avoided. Papers on applied geology should preferably be linked to such core disciplines and must be addressed to a more general geoscientific audience.