希夫碱和有机配体稳定金属纳米粒子作为危险金属离子的潜在化学传感器:设计、原理、光学信号机制和应用

IF 2.7 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
{"title":"希夫碱和有机配体稳定金属纳米粒子作为危险金属离子的潜在化学传感器:设计、原理、光学信号机制和应用","authors":"","doi":"10.1016/j.ica.2024.122321","DOIUrl":null,"url":null,"abstract":"<div><p>Metal ions participate in numerous essential biological processes in our body. In the external environment, metal ions are present in food, soil, and water. However, the presence of metal ions concentration above the permissible limits may cause hazardous effect on environment and human beings. Therefore, detection of metal ions with high selectivity and sensitivity is important for biological system and in environmental monitoring. In literature, several examples employing Schiff base derivatives or MNPs as optical sensors for metal ions were investigated. However, studies on the development of Schiff base stabilized metal nanoparticles as optical sensors for hazardous metal ions are scanty in the literature. At present, it is essential to be able to construct controlled ultra-small, highly dispersed, stable, and functionalized metal nanoparticles (MNPs) to make them suitable for industrial applications. The production of Schiff base stabilized metal nanoparticles (MNPs) can be achieved easily without demanding experimental requirements. As a result, it provides a simple, quick, and effective approach to create highly efficient catalysts for the treatment of environmental pollutants. Herein, we report Schiff base and organic ligand stabilized metal nanoparticles as potential chemosensors for hazardous metal ions.</p></div>","PeriodicalId":13599,"journal":{"name":"Inorganica Chimica Acta","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schiff base and organic ligand stabilized metal nanoparticles as potential chemosensors for hazardous metal ions: Design, principle, optical signaling mechanism and application\",\"authors\":\"\",\"doi\":\"10.1016/j.ica.2024.122321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal ions participate in numerous essential biological processes in our body. In the external environment, metal ions are present in food, soil, and water. However, the presence of metal ions concentration above the permissible limits may cause hazardous effect on environment and human beings. Therefore, detection of metal ions with high selectivity and sensitivity is important for biological system and in environmental monitoring. In literature, several examples employing Schiff base derivatives or MNPs as optical sensors for metal ions were investigated. However, studies on the development of Schiff base stabilized metal nanoparticles as optical sensors for hazardous metal ions are scanty in the literature. At present, it is essential to be able to construct controlled ultra-small, highly dispersed, stable, and functionalized metal nanoparticles (MNPs) to make them suitable for industrial applications. The production of Schiff base stabilized metal nanoparticles (MNPs) can be achieved easily without demanding experimental requirements. As a result, it provides a simple, quick, and effective approach to create highly efficient catalysts for the treatment of environmental pollutants. Herein, we report Schiff base and organic ligand stabilized metal nanoparticles as potential chemosensors for hazardous metal ions.</p></div>\",\"PeriodicalId\":13599,\"journal\":{\"name\":\"Inorganica Chimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020169324004122\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020169324004122","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

金属离子参与人体内许多重要的生物过程。在外部环境中,金属离子存在于食物、土壤和水中。然而,如果金属离子的浓度超过允许限度,就会对环境和人类造成危害。因此,高选择性和高灵敏度的金属离子检测对于生物系统和环境监测非常重要。文献中研究了一些采用希夫碱衍生物或 MNPs 作为金属离子光学传感器的实例。然而,有关开发希夫碱稳定金属纳米粒子作为有害金属离子光学传感器的研究在文献中并不多见。目前,必须能够构建可控的超小型、高度分散、稳定和功能化的金属纳米粒子(MNPs),使其适用于工业应用。希夫碱稳定金属纳米粒子(MNPs)的生产无需苛刻的实验要求即可轻松实现。因此,它为制造用于处理环境污染物的高效催化剂提供了一种简单、快速而有效的方法。在此,我们报告了希夫碱和有机配体稳定的金属纳米粒子作为潜在的有害金属离子化学传感器的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Schiff base and organic ligand stabilized metal nanoparticles as potential chemosensors for hazardous metal ions: Design, principle, optical signaling mechanism and application

Schiff base and organic ligand stabilized metal nanoparticles as potential chemosensors for hazardous metal ions: Design, principle, optical signaling mechanism and application

Metal ions participate in numerous essential biological processes in our body. In the external environment, metal ions are present in food, soil, and water. However, the presence of metal ions concentration above the permissible limits may cause hazardous effect on environment and human beings. Therefore, detection of metal ions with high selectivity and sensitivity is important for biological system and in environmental monitoring. In literature, several examples employing Schiff base derivatives or MNPs as optical sensors for metal ions were investigated. However, studies on the development of Schiff base stabilized metal nanoparticles as optical sensors for hazardous metal ions are scanty in the literature. At present, it is essential to be able to construct controlled ultra-small, highly dispersed, stable, and functionalized metal nanoparticles (MNPs) to make them suitable for industrial applications. The production of Schiff base stabilized metal nanoparticles (MNPs) can be achieved easily without demanding experimental requirements. As a result, it provides a simple, quick, and effective approach to create highly efficient catalysts for the treatment of environmental pollutants. Herein, we report Schiff base and organic ligand stabilized metal nanoparticles as potential chemosensors for hazardous metal ions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganica Chimica Acta
Inorganica Chimica Acta 化学-无机化学与核化学
CiteScore
6.00
自引率
3.60%
发文量
440
审稿时长
35 days
期刊介绍: Inorganica Chimica Acta is an established international forum for all aspects of advanced Inorganic Chemistry. Original papers of high scientific level and interest are published in the form of Articles and Reviews. Topics covered include: • chemistry of the main group elements and the d- and f-block metals, including the synthesis, characterization and reactivity of coordination, organometallic, biomimetic, supramolecular coordination compounds, including associated computational studies; • synthesis, physico-chemical properties, applications of molecule-based nano-scaled clusters and nanomaterials designed using the principles of coordination chemistry, as well as coordination polymers (CPs), metal-organic frameworks (MOFs), metal-organic polyhedra (MPOs); • reaction mechanisms and physico-chemical investigations computational studies of metalloenzymes and their models; • applications of inorganic compounds, metallodrugs and molecule-based materials. Papers composed primarily of structural reports will typically not be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信