费雪信息边界及其在具有小噪声的 SDE 中的应用

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Nguyen Tien Dung , Nguyen Thu Hang
{"title":"费雪信息边界及其在具有小噪声的 SDE 中的应用","authors":"Nguyen Tien Dung ,&nbsp;Nguyen Thu Hang","doi":"10.1016/j.spa.2024.104468","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first establish general bounds on the Fisher information distance to the class of normal distributions of Malliavin differentiable random variables. We then study the rate of Fisher information convergence in the central limit theorem for the solution of small noise stochastic differential equations and its additive functionals. We also show that the convergence rate is of optimal order.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"178 ","pages":"Article 104468"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fisher information bounds and applications to SDEs with small noise\",\"authors\":\"Nguyen Tien Dung ,&nbsp;Nguyen Thu Hang\",\"doi\":\"10.1016/j.spa.2024.104468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we first establish general bounds on the Fisher information distance to the class of normal distributions of Malliavin differentiable random variables. We then study the rate of Fisher information convergence in the central limit theorem for the solution of small noise stochastic differential equations and its additive functionals. We also show that the convergence rate is of optimal order.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"178 \",\"pages\":\"Article 104468\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001741\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001741","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先为马利亚文可微随机变量的正态分布类建立了费雪信息距离的一般界限。然后,我们研究了小噪声随机微分方程及其加法函数解的中心极限定理中的 Fisher 信息收敛速率。我们还证明了收敛速率是最优阶的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fisher information bounds and applications to SDEs with small noise

In this paper, we first establish general bounds on the Fisher information distance to the class of normal distributions of Malliavin differentiable random variables. We then study the rate of Fisher information convergence in the central limit theorem for the solution of small noise stochastic differential equations and its additive functionals. We also show that the convergence rate is of optimal order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信