汇聚束低能电子衍射中自动编码器潜空间对材料结构的敏感性

IF 2.1 3区 工程技术 Q2 MICROSCOPY
M. Ivanov, J. Pereiro
{"title":"汇聚束低能电子衍射中自动编码器潜空间对材料结构的敏感性","authors":"M. Ivanov,&nbsp;J. Pereiro","doi":"10.1016/j.ultramic.2024.114021","DOIUrl":null,"url":null,"abstract":"<div><p>The convergent-beam low energy electron diffraction technique has been proposed as a novel method to gather local structural and electronic information from crystalline surfaces during low-energy electron microscopy. However, the approach suffers from high complexity of the resulting diffraction patterns. We show that Convolutional Autoencoders trained on CBLEED patterns achieve a highly structured latent space. The latent space is then used to estimate structural parameters with sub-angstrom accuracy. The low complexity of the neural networks enables real time application of the approach during experiments with low latency.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"266 ","pages":"Article 114021"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124001001/pdfft?md5=2b44dc788be0de80f016aef2e3c8c553&pid=1-s2.0-S0304399124001001-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Autoencoder latent space sensitivity to material structure in convergent-beam low energy electron diffraction\",\"authors\":\"M. Ivanov,&nbsp;J. Pereiro\",\"doi\":\"10.1016/j.ultramic.2024.114021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The convergent-beam low energy electron diffraction technique has been proposed as a novel method to gather local structural and electronic information from crystalline surfaces during low-energy electron microscopy. However, the approach suffers from high complexity of the resulting diffraction patterns. We show that Convolutional Autoencoders trained on CBLEED patterns achieve a highly structured latent space. The latent space is then used to estimate structural parameters with sub-angstrom accuracy. The low complexity of the neural networks enables real time application of the approach during experiments with low latency.</p></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"266 \",\"pages\":\"Article 114021\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304399124001001/pdfft?md5=2b44dc788be0de80f016aef2e3c8c553&pid=1-s2.0-S0304399124001001-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399124001001\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124001001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

汇聚束低能电子衍射技术是在低能电子显微镜下收集晶体表面局部结构和电子信息的一种新方法。然而,这种方法所产生的衍射图样复杂度较高。我们的研究表明,在 CBLEED 图案上训练的卷积自动编码器可以获得高度结构化的潜在空间。然后利用潜空间以亚埃级精度估算结构参数。神经网络的低复杂性使该方法能够在低延迟实验中实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autoencoder latent space sensitivity to material structure in convergent-beam low energy electron diffraction

The convergent-beam low energy electron diffraction technique has been proposed as a novel method to gather local structural and electronic information from crystalline surfaces during low-energy electron microscopy. However, the approach suffers from high complexity of the resulting diffraction patterns. We show that Convolutional Autoencoders trained on CBLEED patterns achieve a highly structured latent space. The latent space is then used to estimate structural parameters with sub-angstrom accuracy. The low complexity of the neural networks enables real time application of the approach during experiments with low latency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信