通过混合 TDMA-NOMA 传输的主动 RIS 实现高能效多用户任务卸载

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Baoshan Lu , Junli Fang , Junxiu Liu , Xuemin Hong
{"title":"通过混合 TDMA-NOMA 传输的主动 RIS 实现高能效多用户任务卸载","authors":"Baoshan Lu ,&nbsp;Junli Fang ,&nbsp;Junxiu Liu ,&nbsp;Xuemin Hong","doi":"10.1016/j.jnca.2024.104005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we address the challenge of minimizing system energy consumption for task offloading within non-line-of-sight (NLoS) mobile edge computing (MEC) environments. Our approach integrates an active reconfigurable intelligent surface (RIS) and employs a hybrid transmission scheme combining time division multiple access (TDMA) and non-orthogonal multiple access (NOMA) to enhance the quality of service (QoS) for user task offloading. The formulation of this problem as a non-convex optimization issue presents significant challenges due to its inherent complexity. To overcome this, we introduce an innovative method termed element refinement-based differential evolution (ERBDE). Initially, through rigorous theoretical analysis, we optimally determine the allocation of local computation resources, computation resources at the base station (BS), and transmit power of users, while maintaining fixed values for the offloading ratio, amplification factor, phase of the reflecting element, and the transmission period. Subsequently, we employ the differential evolution (DE) algorithm to iteratively fine-tune the offloading ratio, amplification factor, phase of the reflecting element, and transmission period towards near-optimal configurations. Our simulation results demonstrate that the implementation of active RIS-supported task offloading utilizing the hybrid TDMA-NOMA scheme results in an average system energy consumption reduction of 80.3%.</p></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"232 ","pages":"Article 104005"},"PeriodicalIF":7.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy efficient multi-user task offloading through active RIS with hybrid TDMA-NOMA transmission\",\"authors\":\"Baoshan Lu ,&nbsp;Junli Fang ,&nbsp;Junxiu Liu ,&nbsp;Xuemin Hong\",\"doi\":\"10.1016/j.jnca.2024.104005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we address the challenge of minimizing system energy consumption for task offloading within non-line-of-sight (NLoS) mobile edge computing (MEC) environments. Our approach integrates an active reconfigurable intelligent surface (RIS) and employs a hybrid transmission scheme combining time division multiple access (TDMA) and non-orthogonal multiple access (NOMA) to enhance the quality of service (QoS) for user task offloading. The formulation of this problem as a non-convex optimization issue presents significant challenges due to its inherent complexity. To overcome this, we introduce an innovative method termed element refinement-based differential evolution (ERBDE). Initially, through rigorous theoretical analysis, we optimally determine the allocation of local computation resources, computation resources at the base station (BS), and transmit power of users, while maintaining fixed values for the offloading ratio, amplification factor, phase of the reflecting element, and the transmission period. Subsequently, we employ the differential evolution (DE) algorithm to iteratively fine-tune the offloading ratio, amplification factor, phase of the reflecting element, and transmission period towards near-optimal configurations. Our simulation results demonstrate that the implementation of active RIS-supported task offloading utilizing the hybrid TDMA-NOMA scheme results in an average system energy consumption reduction of 80.3%.</p></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"232 \",\"pages\":\"Article 104005\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084804524001826\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524001826","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了在非视距(NLoS)移动边缘计算(MEC)环境中如何最大限度地降低任务卸载的系统能耗这一难题。我们的方法集成了有源可重构智能表面(RIS),并采用了结合时分多址(TDMA)和非正交多址(NOMA)的混合传输方案,以提高用户任务卸载的服务质量(QoS)。由于其固有的复杂性,将这一问题表述为非凸优化问题带来了巨大挑战。为了克服这一难题,我们引入了一种创新方法,即基于元素细化的微分演化(ERBDE)。首先,通过严格的理论分析,我们优化了本地计算资源、基站(BS)计算资源和用户发射功率的分配,同时保持了卸载率、放大系数、反射元件相位和传输周期的固定值。随后,我们采用微分演化(DE)算法对卸载率、放大系数、反射元件相位和传输周期进行迭代微调,以接近最佳配置。我们的仿真结果表明,利用混合 TDMA-NOMA 方案实施主动 RIS 支持的任务卸载可使系统能耗平均降低 80.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy efficient multi-user task offloading through active RIS with hybrid TDMA-NOMA transmission

In this paper, we address the challenge of minimizing system energy consumption for task offloading within non-line-of-sight (NLoS) mobile edge computing (MEC) environments. Our approach integrates an active reconfigurable intelligent surface (RIS) and employs a hybrid transmission scheme combining time division multiple access (TDMA) and non-orthogonal multiple access (NOMA) to enhance the quality of service (QoS) for user task offloading. The formulation of this problem as a non-convex optimization issue presents significant challenges due to its inherent complexity. To overcome this, we introduce an innovative method termed element refinement-based differential evolution (ERBDE). Initially, through rigorous theoretical analysis, we optimally determine the allocation of local computation resources, computation resources at the base station (BS), and transmit power of users, while maintaining fixed values for the offloading ratio, amplification factor, phase of the reflecting element, and the transmission period. Subsequently, we employ the differential evolution (DE) algorithm to iteratively fine-tune the offloading ratio, amplification factor, phase of the reflecting element, and transmission period towards near-optimal configurations. Our simulation results demonstrate that the implementation of active RIS-supported task offloading utilizing the hybrid TDMA-NOMA scheme results in an average system energy consumption reduction of 80.3%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信