Huihui Chen , Jie Song , Li Zeng , Jie Zha , Jiefu Zhu , Anqun Chen , Yu Liu , Zheng Dong , Guochun Chen
{"title":"饮食中的钠会调节巨噬细胞中依赖于 mTORC1 的训练有素的免疫力,从而加速慢性肾脏病的发展","authors":"Huihui Chen , Jie Song , Li Zeng , Jie Zha , Jiefu Zhu , Anqun Chen , Yu Liu , Zheng Dong , Guochun Chen","doi":"10.1016/j.bcp.2024.116505","DOIUrl":null,"url":null,"abstract":"<div><p>Chronic Kidney Disease (CKD) is a significant global health issue linked to dietary habits, especially high salt intake. However, the precise mechanisms driving this progression remain incompletely understood. This study reveals that a high-salt diet intensifies macrophage trained immunity, leading to a marked pro-inflammatory response upon repeated pathogenic exposures, as evidenced by increased renal damage and fibrosis. Under high-salt conditions, there was an induction of CD45<sup>+</sup>F4/80<sup>+</sup> macrophage infiltration into the renal tissue, accompanied by heightened production of inflammatory cytokines. Distinct responses were observed between circulating and resident renal macrophages to a high-salt diet, with a notable upsurge in the migration of pro-inflammatory macrophages, driven by CCL2-CCR2 signaling and aberrant mTORC1 pathway activation. Treatment with rapamycin-liposome effectively reduced this inflammatory cascade by mitigating mTORC1 signaling. Transplantation of monocytes from CKD mice with a high-salt diet significantly exacerbates renal inflammatory damage in the host mice, showing increased migratory tendency and inflammatory activity. The cell co-culture experiment further confirmed that macrophages derived from CKD mice, particularly those under conditions of high salt exposure, significantly induced apoptosis and inflammatory responses in renal tubular cells. Taken together, recurrent exposure to LPS elicits the activation of trained immunity, consequently augmenting inflammatory response of monocytes/macrophages in the involved kidneys. The high-salt diet exacerbates this phenomenon, attributable at least in part to the overactivation of the mTORC1 pathway. This research emphasizes the importance of dietary modulation and targeted immunological interventions in slowing CKD progression, providing new insights into mTORC1-mediated pathophysiological mechanisms and potential management strategies for CKD.</p></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"229 ","pages":"Article 116505"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dietary sodium modulates mTORC1-dependent trained immunity in macrophages to accelerate CKD development\",\"authors\":\"Huihui Chen , Jie Song , Li Zeng , Jie Zha , Jiefu Zhu , Anqun Chen , Yu Liu , Zheng Dong , Guochun Chen\",\"doi\":\"10.1016/j.bcp.2024.116505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chronic Kidney Disease (CKD) is a significant global health issue linked to dietary habits, especially high salt intake. However, the precise mechanisms driving this progression remain incompletely understood. This study reveals that a high-salt diet intensifies macrophage trained immunity, leading to a marked pro-inflammatory response upon repeated pathogenic exposures, as evidenced by increased renal damage and fibrosis. Under high-salt conditions, there was an induction of CD45<sup>+</sup>F4/80<sup>+</sup> macrophage infiltration into the renal tissue, accompanied by heightened production of inflammatory cytokines. Distinct responses were observed between circulating and resident renal macrophages to a high-salt diet, with a notable upsurge in the migration of pro-inflammatory macrophages, driven by CCL2-CCR2 signaling and aberrant mTORC1 pathway activation. Treatment with rapamycin-liposome effectively reduced this inflammatory cascade by mitigating mTORC1 signaling. Transplantation of monocytes from CKD mice with a high-salt diet significantly exacerbates renal inflammatory damage in the host mice, showing increased migratory tendency and inflammatory activity. The cell co-culture experiment further confirmed that macrophages derived from CKD mice, particularly those under conditions of high salt exposure, significantly induced apoptosis and inflammatory responses in renal tubular cells. Taken together, recurrent exposure to LPS elicits the activation of trained immunity, consequently augmenting inflammatory response of monocytes/macrophages in the involved kidneys. The high-salt diet exacerbates this phenomenon, attributable at least in part to the overactivation of the mTORC1 pathway. This research emphasizes the importance of dietary modulation and targeted immunological interventions in slowing CKD progression, providing new insights into mTORC1-mediated pathophysiological mechanisms and potential management strategies for CKD.</p></div>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\"229 \",\"pages\":\"Article 116505\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000629522400488X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000629522400488X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Dietary sodium modulates mTORC1-dependent trained immunity in macrophages to accelerate CKD development
Chronic Kidney Disease (CKD) is a significant global health issue linked to dietary habits, especially high salt intake. However, the precise mechanisms driving this progression remain incompletely understood. This study reveals that a high-salt diet intensifies macrophage trained immunity, leading to a marked pro-inflammatory response upon repeated pathogenic exposures, as evidenced by increased renal damage and fibrosis. Under high-salt conditions, there was an induction of CD45+F4/80+ macrophage infiltration into the renal tissue, accompanied by heightened production of inflammatory cytokines. Distinct responses were observed between circulating and resident renal macrophages to a high-salt diet, with a notable upsurge in the migration of pro-inflammatory macrophages, driven by CCL2-CCR2 signaling and aberrant mTORC1 pathway activation. Treatment with rapamycin-liposome effectively reduced this inflammatory cascade by mitigating mTORC1 signaling. Transplantation of monocytes from CKD mice with a high-salt diet significantly exacerbates renal inflammatory damage in the host mice, showing increased migratory tendency and inflammatory activity. The cell co-culture experiment further confirmed that macrophages derived from CKD mice, particularly those under conditions of high salt exposure, significantly induced apoptosis and inflammatory responses in renal tubular cells. Taken together, recurrent exposure to LPS elicits the activation of trained immunity, consequently augmenting inflammatory response of monocytes/macrophages in the involved kidneys. The high-salt diet exacerbates this phenomenon, attributable at least in part to the overactivation of the mTORC1 pathway. This research emphasizes the importance of dietary modulation and targeted immunological interventions in slowing CKD progression, providing new insights into mTORC1-mediated pathophysiological mechanisms and potential management strategies for CKD.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.