{"title":"减少 eEF2 激酶可减轻丙烯酰胺导致的学习和记忆损伤。","authors":"Xiao-Li Wang, Ru-Nan Zhang, Yu-Lin Pan, Zhi-Ming Li, Hong-Qiu Li, Ya-Ting Lei, Fang-Fang Zhao, Xiao-Xiao Hao, Wei-Wei Ma, Cui-Ping Yu, Hong-Wei Yao, Xin-Yu Wang, Jun-Jie Lv, Yong-Hui Wu, Sheng-Yuan Wang","doi":"10.1186/s13578-024-01285-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The impact of acrylamide (ACR) on learning and memory has garnered considerable attention. However, the targets and mechanisms are still unclear.</p><p><strong>Results: </strong>Elongation factor 2 (eEF2) was significantly upregulated in the results of serum proteomics. Results from in vitro and in vivo experiments indicated a notable upregulation of Eukaryotic elongation factor 2 kinase (eEF2K), the sole kinase responsible for eEF2 phosphorylation, following exposure to ACR (P < 0.05). Subsequent in vitro experiments using eEF2K siRNA and in vivo experiments with eEF2K-knockout mice demonstrated significant improvements in abnormal indicators related to ACR-induced learning and memory deficits (P < 0.05). Proteomic analysis of the hippocampus revealed Lpcat1 as a crucial downstream protein regulated by eEF2K. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that eEF2K may play a role in the process of ACR-induced learning and memory impairment by affecting ether lipid metabolism.</p><p><strong>Conclusions: </strong>In summary, eEF2K as a pivotal treatment target in the mechanisms underlying ACR-induced learning and memory impairment, and studies have shown that it provides robust evidence for potential clinical interventions targeting ACR-induced impairments.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"106"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344312/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reduction of eEF2 kinase alleviates the learning and memory impairment caused by acrylamide.\",\"authors\":\"Xiao-Li Wang, Ru-Nan Zhang, Yu-Lin Pan, Zhi-Ming Li, Hong-Qiu Li, Ya-Ting Lei, Fang-Fang Zhao, Xiao-Xiao Hao, Wei-Wei Ma, Cui-Ping Yu, Hong-Wei Yao, Xin-Yu Wang, Jun-Jie Lv, Yong-Hui Wu, Sheng-Yuan Wang\",\"doi\":\"10.1186/s13578-024-01285-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The impact of acrylamide (ACR) on learning and memory has garnered considerable attention. However, the targets and mechanisms are still unclear.</p><p><strong>Results: </strong>Elongation factor 2 (eEF2) was significantly upregulated in the results of serum proteomics. Results from in vitro and in vivo experiments indicated a notable upregulation of Eukaryotic elongation factor 2 kinase (eEF2K), the sole kinase responsible for eEF2 phosphorylation, following exposure to ACR (P < 0.05). Subsequent in vitro experiments using eEF2K siRNA and in vivo experiments with eEF2K-knockout mice demonstrated significant improvements in abnormal indicators related to ACR-induced learning and memory deficits (P < 0.05). Proteomic analysis of the hippocampus revealed Lpcat1 as a crucial downstream protein regulated by eEF2K. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that eEF2K may play a role in the process of ACR-induced learning and memory impairment by affecting ether lipid metabolism.</p><p><strong>Conclusions: </strong>In summary, eEF2K as a pivotal treatment target in the mechanisms underlying ACR-induced learning and memory impairment, and studies have shown that it provides robust evidence for potential clinical interventions targeting ACR-induced impairments.</p>\",\"PeriodicalId\":49095,\"journal\":{\"name\":\"Cell and Bioscience\",\"volume\":\"14 1\",\"pages\":\"106\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344312/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Bioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13578-024-01285-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Bioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13578-024-01285-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Reduction of eEF2 kinase alleviates the learning and memory impairment caused by acrylamide.
Background: The impact of acrylamide (ACR) on learning and memory has garnered considerable attention. However, the targets and mechanisms are still unclear.
Results: Elongation factor 2 (eEF2) was significantly upregulated in the results of serum proteomics. Results from in vitro and in vivo experiments indicated a notable upregulation of Eukaryotic elongation factor 2 kinase (eEF2K), the sole kinase responsible for eEF2 phosphorylation, following exposure to ACR (P < 0.05). Subsequent in vitro experiments using eEF2K siRNA and in vivo experiments with eEF2K-knockout mice demonstrated significant improvements in abnormal indicators related to ACR-induced learning and memory deficits (P < 0.05). Proteomic analysis of the hippocampus revealed Lpcat1 as a crucial downstream protein regulated by eEF2K. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that eEF2K may play a role in the process of ACR-induced learning and memory impairment by affecting ether lipid metabolism.
Conclusions: In summary, eEF2K as a pivotal treatment target in the mechanisms underlying ACR-induced learning and memory impairment, and studies have shown that it provides robust evidence for potential clinical interventions targeting ACR-induced impairments.
期刊介绍:
Cell and Bioscience, the official journal of the Society of Chinese Bioscientists in America, is an open access, peer-reviewed journal that encompasses all areas of life science research.