{"title":"从广义对称性破缺看中微子质量","authors":"Clay Córdova, Sungwoo Hong, Seth Koren, Kantaro Ohmori","doi":"10.1103/physrevx.14.031033","DOIUrl":null,"url":null,"abstract":"We explore generalized global symmetries in theories of physics beyond the standard model. Theories of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>Z</mi><mo>′</mo></msup></math> bosons generically contain “noninvertible” chiral symmetries, whose presence indicates a natural paradigm to break this symmetry by an exponentially small amount in an ultraviolet completion. For example, in models of gauged lepton family difference such as the phenomenologically well motivated <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">U</mi><mo stretchy=\"false\">(</mo><mn>1</mn><msub><mo stretchy=\"false\">)</mo><mrow><msub><mi>L</mi><mi>μ</mi></msub><mo>−</mo><msub><mi>L</mi><mi>τ</mi></msub></mrow></msub></math>, there is a noninvertible lepton number symmetry which protects neutrino masses. We embed these theories in gauged non-Abelian horizontal lepton symmetries, e.g., <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">U</mi><mo stretchy=\"false\">(</mo><mn>1</mn><msub><mo stretchy=\"false\">)</mo><mrow><msub><mi>L</mi><mi>μ</mi></msub><mo>−</mo><msub><mi>L</mi><mi>τ</mi></msub></mrow></msub><mo>⊂</mo><mrow><mi>SU</mi></mrow><mo stretchy=\"false\">(</mo><mn>3</mn><msub><mo stretchy=\"false\">)</mo><mi>H</mi></msub></math>, where the generalized symmetries are broken nonperturbatively by the existence of lepton family magnetic monopoles. In such theories, either Majorana or Dirac neutrino masses may be generated through quantum gauge theory effects from the charged lepton Yukawas, e.g., <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>y</mi><mi>ν</mi></msub><mo>∼</mo><msub><mi>y</mi><mi>τ</mi></msub><mi>exp</mi><mo stretchy=\"false\">(</mo><mo>−</mo><msub><mi>S</mi><mrow><mi>inst</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>. These theories require no bevy of new fields nor <i>ad hoc</i> additional global symmetries but are instead simple, natural, and predictive: The discovery of a lepton family <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>Z</mi><mo>′</mo></msup></math> at low energies will reveal the scale at which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>L</mi><mi>μ</mi></msub><mo>−</mo><msub><mi>L</mi><mi>τ</mi></msub></math> emerges from a larger gauge symmetry.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutrino Masses from Generalized Symmetry Breaking\",\"authors\":\"Clay Córdova, Sungwoo Hong, Seth Koren, Kantaro Ohmori\",\"doi\":\"10.1103/physrevx.14.031033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore generalized global symmetries in theories of physics beyond the standard model. Theories of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>Z</mi><mo>′</mo></msup></math> bosons generically contain “noninvertible” chiral symmetries, whose presence indicates a natural paradigm to break this symmetry by an exponentially small amount in an ultraviolet completion. For example, in models of gauged lepton family difference such as the phenomenologically well motivated <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">U</mi><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><msub><mo stretchy=\\\"false\\\">)</mo><mrow><msub><mi>L</mi><mi>μ</mi></msub><mo>−</mo><msub><mi>L</mi><mi>τ</mi></msub></mrow></msub></math>, there is a noninvertible lepton number symmetry which protects neutrino masses. We embed these theories in gauged non-Abelian horizontal lepton symmetries, e.g., <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">U</mi><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><msub><mo stretchy=\\\"false\\\">)</mo><mrow><msub><mi>L</mi><mi>μ</mi></msub><mo>−</mo><msub><mi>L</mi><mi>τ</mi></msub></mrow></msub><mo>⊂</mo><mrow><mi>SU</mi></mrow><mo stretchy=\\\"false\\\">(</mo><mn>3</mn><msub><mo stretchy=\\\"false\\\">)</mo><mi>H</mi></msub></math>, where the generalized symmetries are broken nonperturbatively by the existence of lepton family magnetic monopoles. In such theories, either Majorana or Dirac neutrino masses may be generated through quantum gauge theory effects from the charged lepton Yukawas, e.g., <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>y</mi><mi>ν</mi></msub><mo>∼</mo><msub><mi>y</mi><mi>τ</mi></msub><mi>exp</mi><mo stretchy=\\\"false\\\">(</mo><mo>−</mo><msub><mi>S</mi><mrow><mi>inst</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>. These theories require no bevy of new fields nor <i>ad hoc</i> additional global symmetries but are instead simple, natural, and predictive: The discovery of a lepton family <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>Z</mi><mo>′</mo></msup></math> at low energies will reveal the scale at which <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>L</mi><mi>μ</mi></msub><mo>−</mo><msub><mi>L</mi><mi>τ</mi></msub></math> emerges from a larger gauge symmetry.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.031033\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031033","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Neutrino Masses from Generalized Symmetry Breaking
We explore generalized global symmetries in theories of physics beyond the standard model. Theories of bosons generically contain “noninvertible” chiral symmetries, whose presence indicates a natural paradigm to break this symmetry by an exponentially small amount in an ultraviolet completion. For example, in models of gauged lepton family difference such as the phenomenologically well motivated , there is a noninvertible lepton number symmetry which protects neutrino masses. We embed these theories in gauged non-Abelian horizontal lepton symmetries, e.g., , where the generalized symmetries are broken nonperturbatively by the existence of lepton family magnetic monopoles. In such theories, either Majorana or Dirac neutrino masses may be generated through quantum gauge theory effects from the charged lepton Yukawas, e.g., . These theories require no bevy of new fields nor ad hoc additional global symmetries but are instead simple, natural, and predictive: The discovery of a lepton family at low energies will reveal the scale at which emerges from a larger gauge symmetry.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.