Sung Mook Lee, Dong Woo Kang, Jinn-Ouk Gong, Donghui Jeong, Dong-Won Jung and Seong Chan Park
{"title":"暗光子产生的宇宙双折射","authors":"Sung Mook Lee, Dong Woo Kang, Jinn-Ouk Gong, Donghui Jeong, Dong-Won Jung and Seong Chan Park","doi":"10.1088/1475-7516/2024/08/037","DOIUrl":null,"url":null,"abstract":"We study the kinetic mixing between the cosmic microwave background (CMB) photon and the birefringent dark photon. These birefringent dark photon may exist in parity-violating dark sector, for example, through the coupling to axion field. We show that the birefringence of the dark photon propagates to the CMB photon, but the resulting birefringence may not be isotropic over the sky, but will be anisotropic in general. Moreover, our investigation sheds light on the essential role played by kinetic mixing in the generation of two fundamental characteristics of the CMB: circular polarization and spectral distortion.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cosmic birefringence by dark photon\",\"authors\":\"Sung Mook Lee, Dong Woo Kang, Jinn-Ouk Gong, Donghui Jeong, Dong-Won Jung and Seong Chan Park\",\"doi\":\"10.1088/1475-7516/2024/08/037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the kinetic mixing between the cosmic microwave background (CMB) photon and the birefringent dark photon. These birefringent dark photon may exist in parity-violating dark sector, for example, through the coupling to axion field. We show that the birefringence of the dark photon propagates to the CMB photon, but the resulting birefringence may not be isotropic over the sky, but will be anisotropic in general. Moreover, our investigation sheds light on the essential role played by kinetic mixing in the generation of two fundamental characteristics of the CMB: circular polarization and spectral distortion.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/08/037\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/08/037","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
We study the kinetic mixing between the cosmic microwave background (CMB) photon and the birefringent dark photon. These birefringent dark photon may exist in parity-violating dark sector, for example, through the coupling to axion field. We show that the birefringence of the dark photon propagates to the CMB photon, but the resulting birefringence may not be isotropic over the sky, but will be anisotropic in general. Moreover, our investigation sheds light on the essential role played by kinetic mixing in the generation of two fundamental characteristics of the CMB: circular polarization and spectral distortion.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.