Marina S. Cagliari, Emanuele Castorina, Marco Bonici and Davide Bianchi
{"title":"利用傅立叶空间中的 eBOSS DR16 类星体对原始非高斯性的最佳约束","authors":"Marina S. Cagliari, Emanuele Castorina, Marco Bonici and Davide Bianchi","doi":"10.1088/1475-7516/2024/08/036","DOIUrl":null,"url":null,"abstract":"We present constraints on the amplitude of local Primordial Non-Gaussianities (PNG), fNL, using the quasar sample in the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16). We analyze the power spectrum monopole, testing for the presence of scale-dependent galaxy bias induced by local PNG. Our analysis makes use of optimal redshift weights that maximize the response of the quasar sample to the possible presence of non-zero PNG. We find -4 < fNL < 27 at 68% confidence level, which is among the strongest bounds with Large Scale Structure data. The optimal analysis reduces the error bar by ~10% compared to the standard one, but this improvement is lower than the one expected from previous forecasts. In addition, the larger volume of this dataset, when compared to previous releases of the eBOSS quasar catalog, does not always correspond to a reduction of the final uncertainty on local PNG. This could suggest the presence of still unknown systematic effects in the data. If the quasars have a lower response to local PNG, our optimal constraint becomes -23 < fNL < 21 at 68%, with an improvement of 30% over standard analyses. We also show how to use the optimal weights to put data-driven priors on the sample's response to local PNG.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal constraints on Primordial non-Gaussianity with the eBOSS DR16 quasars in Fourier space\",\"authors\":\"Marina S. Cagliari, Emanuele Castorina, Marco Bonici and Davide Bianchi\",\"doi\":\"10.1088/1475-7516/2024/08/036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present constraints on the amplitude of local Primordial Non-Gaussianities (PNG), fNL, using the quasar sample in the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16). We analyze the power spectrum monopole, testing for the presence of scale-dependent galaxy bias induced by local PNG. Our analysis makes use of optimal redshift weights that maximize the response of the quasar sample to the possible presence of non-zero PNG. We find -4 < fNL < 27 at 68% confidence level, which is among the strongest bounds with Large Scale Structure data. The optimal analysis reduces the error bar by ~10% compared to the standard one, but this improvement is lower than the one expected from previous forecasts. In addition, the larger volume of this dataset, when compared to previous releases of the eBOSS quasar catalog, does not always correspond to a reduction of the final uncertainty on local PNG. This could suggest the presence of still unknown systematic effects in the data. If the quasars have a lower response to local PNG, our optimal constraint becomes -23 < fNL < 21 at 68%, with an improvement of 30% over standard analyses. We also show how to use the optimal weights to put data-driven priors on the sample's response to local PNG.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/08/036\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/08/036","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Optimal constraints on Primordial non-Gaussianity with the eBOSS DR16 quasars in Fourier space
We present constraints on the amplitude of local Primordial Non-Gaussianities (PNG), fNL, using the quasar sample in the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16). We analyze the power spectrum monopole, testing for the presence of scale-dependent galaxy bias induced by local PNG. Our analysis makes use of optimal redshift weights that maximize the response of the quasar sample to the possible presence of non-zero PNG. We find -4 < fNL < 27 at 68% confidence level, which is among the strongest bounds with Large Scale Structure data. The optimal analysis reduces the error bar by ~10% compared to the standard one, but this improvement is lower than the one expected from previous forecasts. In addition, the larger volume of this dataset, when compared to previous releases of the eBOSS quasar catalog, does not always correspond to a reduction of the final uncertainty on local PNG. This could suggest the presence of still unknown systematic effects in the data. If the quasars have a lower response to local PNG, our optimal constraint becomes -23 < fNL < 21 at 68%, with an improvement of 30% over standard analyses. We also show how to use the optimal weights to put data-driven priors on the sample's response to local PNG.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.