{"title":"浸入式柔性固体的流固相互作用问题公式:不同截面圆柱体流过分流器的应用","authors":"","doi":"10.1016/j.cma.2024.117306","DOIUrl":null,"url":null,"abstract":"<div><p>In the finite element method framework, a fluid–structure formulation is developed by coupling an Eulerian fixed-mesh fluid approach with a Lagrangian deforming-mesh description for a flexible solid. The coupled formulation is solved using a staggered scheme during time. For the fluid solution stage, the solid walls are considered as a time-variable internal boundary. The velocity and pressure fields are obtained by solving the weak form of the fluid dynamic equations in which the solid velocity is imposed on the internal boundary via a penalization term. For the solid solution stage, the displacement field is obtained by solving the discrete solid dynamic equations which consider traction forces computed by integrating pressures and viscous stresses on the nodes belonging to the solid walls. This novel technique is firstly applied to analyze a flexible splitter under the shedding of a flow past square cylinder due to this problem is considered as a benchmark in the literature. The present solutions agree with those computed using body-fitted techniques, thus validating the proposal. Secondly, flexible splitter motions under the shedding of flow past cylinders with different cross-sections and splitter lengths are comprehensively studied. Overall, the computed results confirmed that the hydrodynamic coefficients on the cylinders were reduced because of the presence of the splitter.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A formulation for fluid–structure interaction problems with immersed flexible solids: Application to splitters subjected to flow past cylinders with different cross-sections\",\"authors\":\"\",\"doi\":\"10.1016/j.cma.2024.117306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the finite element method framework, a fluid–structure formulation is developed by coupling an Eulerian fixed-mesh fluid approach with a Lagrangian deforming-mesh description for a flexible solid. The coupled formulation is solved using a staggered scheme during time. For the fluid solution stage, the solid walls are considered as a time-variable internal boundary. The velocity and pressure fields are obtained by solving the weak form of the fluid dynamic equations in which the solid velocity is imposed on the internal boundary via a penalization term. For the solid solution stage, the displacement field is obtained by solving the discrete solid dynamic equations which consider traction forces computed by integrating pressures and viscous stresses on the nodes belonging to the solid walls. This novel technique is firstly applied to analyze a flexible splitter under the shedding of a flow past square cylinder due to this problem is considered as a benchmark in the literature. The present solutions agree with those computed using body-fitted techniques, thus validating the proposal. Secondly, flexible splitter motions under the shedding of flow past cylinders with different cross-sections and splitter lengths are comprehensively studied. Overall, the computed results confirmed that the hydrodynamic coefficients on the cylinders were reduced because of the presence of the splitter.</p></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524005620\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005620","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A formulation for fluid–structure interaction problems with immersed flexible solids: Application to splitters subjected to flow past cylinders with different cross-sections
In the finite element method framework, a fluid–structure formulation is developed by coupling an Eulerian fixed-mesh fluid approach with a Lagrangian deforming-mesh description for a flexible solid. The coupled formulation is solved using a staggered scheme during time. For the fluid solution stage, the solid walls are considered as a time-variable internal boundary. The velocity and pressure fields are obtained by solving the weak form of the fluid dynamic equations in which the solid velocity is imposed on the internal boundary via a penalization term. For the solid solution stage, the displacement field is obtained by solving the discrete solid dynamic equations which consider traction forces computed by integrating pressures and viscous stresses on the nodes belonging to the solid walls. This novel technique is firstly applied to analyze a flexible splitter under the shedding of a flow past square cylinder due to this problem is considered as a benchmark in the literature. The present solutions agree with those computed using body-fitted techniques, thus validating the proposal. Secondly, flexible splitter motions under the shedding of flow past cylinders with different cross-sections and splitter lengths are comprehensively studied. Overall, the computed results confirmed that the hydrodynamic coefficients on the cylinders were reduced because of the presence of the splitter.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.