大肠杆菌细胞自由蛋白质合成产生的腺相关病毒 5 蛋白颗粒。

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
ACS Synthetic Biology Pub Date : 2024-09-20 Epub Date: 2024-08-23 DOI:10.1021/acssynbio.4c00403
Danielle Deuker, Ernest Asilonu, Daniel G Bracewell, Stefanie Frank
{"title":"大肠杆菌细胞自由蛋白质合成产生的腺相关病毒 5 蛋白颗粒。","authors":"Danielle Deuker, Ernest Asilonu, Daniel G Bracewell, Stefanie Frank","doi":"10.1021/acssynbio.4c00403","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant adeno-associated viruses (rAAVs) have emerged as important tools for gene therapy and, more recently, vaccine development. Nonetheless, manufacturing can be costly and time-consuming, emphasizing the importance of alternative production platforms. We investigate the potential of <i>E. coli</i>-based cell-free protein synthesis (CFPS) to produce recombinant AAV5 virus-like particles (VLPs). AAV5 virus protein 3 (VP3) constructs, both with and without Strep-tag II, were expressed with CFPS. Lower reaction temperatures resulted in increased solubility, with the untagged variant containing nearly 90% more soluble VLP VP3 protein at 18 °C than at 37 °C. Affinity chromatography of N-terminally Strep(II)-tagged VP3 enabled successful isolation with minimal processing. DLS and TEM confirmed the presence of ∼20 nm particles. Furthermore, the N-terminally tagged AAV5 VP3 VLPs were biologically active, successfully internalizing into HeLa cells. This study describes an innovative approach to AAV VLP production using <i>E. coli</i>-based CFPS, demonstrating its potential for rapid and biologically active AAV VLP synthesis.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adeno-Associated Virus 5 Protein Particles Produced by <i>E. coli</i> Cell-Free Protein Synthesis.\",\"authors\":\"Danielle Deuker, Ernest Asilonu, Daniel G Bracewell, Stefanie Frank\",\"doi\":\"10.1021/acssynbio.4c00403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombinant adeno-associated viruses (rAAVs) have emerged as important tools for gene therapy and, more recently, vaccine development. Nonetheless, manufacturing can be costly and time-consuming, emphasizing the importance of alternative production platforms. We investigate the potential of <i>E. coli</i>-based cell-free protein synthesis (CFPS) to produce recombinant AAV5 virus-like particles (VLPs). AAV5 virus protein 3 (VP3) constructs, both with and without Strep-tag II, were expressed with CFPS. Lower reaction temperatures resulted in increased solubility, with the untagged variant containing nearly 90% more soluble VLP VP3 protein at 18 °C than at 37 °C. Affinity chromatography of N-terminally Strep(II)-tagged VP3 enabled successful isolation with minimal processing. DLS and TEM confirmed the presence of ∼20 nm particles. Furthermore, the N-terminally tagged AAV5 VP3 VLPs were biologically active, successfully internalizing into HeLa cells. This study describes an innovative approach to AAV VLP production using <i>E. coli</i>-based CFPS, demonstrating its potential for rapid and biologically active AAV VLP synthesis.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00403\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00403","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

重组腺相关病毒(rAAV)已成为基因治疗以及最近疫苗开发的重要工具。然而,生产成本高、耗时长,这凸显了替代生产平台的重要性。我们研究了基于大肠杆菌的无细胞蛋白合成(CFPS)生产重组 AAV5 病毒样颗粒(VLPs)的潜力。AAV5 病毒蛋白 3 (VP3) 构建物,包括带 Strep-tag II 和不带 Strep-tag II 的,都用 CFPS 表达。较低的反应温度导致溶解度增加,未标记的变体在 18 °C时的可溶性 VLP VP3 蛋白比 37 °C时多近 90%。对 N 端 Strep(II)-tagged VP3 进行亲和层析,只需极少的处理就能成功分离。DLS 和 TEM 证实了 ∼20 nm 颗粒的存在。此外,N端标记的AAV5 VP3 VLPs具有生物活性,能成功内化到HeLa细胞中。本研究描述了一种利用基于大肠杆菌的 CFPS 生产 AAV VLP 的创新方法,证明了其在快速合成具有生物活性的 AAV VLP 方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adeno-Associated Virus 5 Protein Particles Produced by <i>E. coli</i> Cell-Free Protein Synthesis.

Adeno-Associated Virus 5 Protein Particles Produced by E. coli Cell-Free Protein Synthesis.

Recombinant adeno-associated viruses (rAAVs) have emerged as important tools for gene therapy and, more recently, vaccine development. Nonetheless, manufacturing can be costly and time-consuming, emphasizing the importance of alternative production platforms. We investigate the potential of E. coli-based cell-free protein synthesis (CFPS) to produce recombinant AAV5 virus-like particles (VLPs). AAV5 virus protein 3 (VP3) constructs, both with and without Strep-tag II, were expressed with CFPS. Lower reaction temperatures resulted in increased solubility, with the untagged variant containing nearly 90% more soluble VLP VP3 protein at 18 °C than at 37 °C. Affinity chromatography of N-terminally Strep(II)-tagged VP3 enabled successful isolation with minimal processing. DLS and TEM confirmed the presence of ∼20 nm particles. Furthermore, the N-terminally tagged AAV5 VP3 VLPs were biologically active, successfully internalizing into HeLa cells. This study describes an innovative approach to AAV VLP production using E. coli-based CFPS, demonstrating its potential for rapid and biologically active AAV VLP synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信