{"title":"治疗分子集群 Ag5 的活性取决于氧气水平和 HIF-1 介导的信号传导","authors":"","doi":"10.1016/j.redox.2024.103326","DOIUrl":null,"url":null,"abstract":"<div><p>Regions of hypoxia occur in most solid tumours and are known to significantly impact therapy response and patient prognosis. Ag5 is a recently reported silver molecular cluster which inhibits both glutathione and thioredoxin signalling therefore limiting cellular antioxidant capacity. Ag5 treatment significantly reduces cell viability in a range of cancer cell lines with little to no impact on non-transformed cells. Characterisation of redox homeostasis in hypoxia demonstrated an increase in reactive oxygen species and glutathione albeit with different kinetics. Significant Ag5-mediated loss of viability was observed in a range of hypoxic conditions which mimic the tumour microenvironment however, this effect was reduced compared to normoxic conditions. Reduced sensitivity to Ag5 in hypoxia was attributed to HIF-1 mediated signalling to reduce PDH via PDK1/3 activity and changes in mitochondrial oxygen availability. Importantly, the addition of Ag5 significantly increased radiation-induced cell death in hypoxic conditions associated with radioresistance. Together, these data demonstrate Ag5 is a potent and cancer specific agent which could be used effectively in combination with radiotherapy.</p></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213231724003045/pdfft?md5=1245a290b8072d26ffec189404ed6a8d&pid=1-s2.0-S2213231724003045-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The activity of therapeutic molecular cluster Ag5 is dependent on oxygen level and HIF-1 mediated signalling\",\"authors\":\"\",\"doi\":\"10.1016/j.redox.2024.103326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Regions of hypoxia occur in most solid tumours and are known to significantly impact therapy response and patient prognosis. Ag5 is a recently reported silver molecular cluster which inhibits both glutathione and thioredoxin signalling therefore limiting cellular antioxidant capacity. Ag5 treatment significantly reduces cell viability in a range of cancer cell lines with little to no impact on non-transformed cells. Characterisation of redox homeostasis in hypoxia demonstrated an increase in reactive oxygen species and glutathione albeit with different kinetics. Significant Ag5-mediated loss of viability was observed in a range of hypoxic conditions which mimic the tumour microenvironment however, this effect was reduced compared to normoxic conditions. Reduced sensitivity to Ag5 in hypoxia was attributed to HIF-1 mediated signalling to reduce PDH via PDK1/3 activity and changes in mitochondrial oxygen availability. Importantly, the addition of Ag5 significantly increased radiation-induced cell death in hypoxic conditions associated with radioresistance. Together, these data demonstrate Ag5 is a potent and cancer specific agent which could be used effectively in combination with radiotherapy.</p></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213231724003045/pdfft?md5=1245a290b8072d26ffec189404ed6a8d&pid=1-s2.0-S2213231724003045-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231724003045\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724003045","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The activity of therapeutic molecular cluster Ag5 is dependent on oxygen level and HIF-1 mediated signalling
Regions of hypoxia occur in most solid tumours and are known to significantly impact therapy response and patient prognosis. Ag5 is a recently reported silver molecular cluster which inhibits both glutathione and thioredoxin signalling therefore limiting cellular antioxidant capacity. Ag5 treatment significantly reduces cell viability in a range of cancer cell lines with little to no impact on non-transformed cells. Characterisation of redox homeostasis in hypoxia demonstrated an increase in reactive oxygen species and glutathione albeit with different kinetics. Significant Ag5-mediated loss of viability was observed in a range of hypoxic conditions which mimic the tumour microenvironment however, this effect was reduced compared to normoxic conditions. Reduced sensitivity to Ag5 in hypoxia was attributed to HIF-1 mediated signalling to reduce PDH via PDK1/3 activity and changes in mitochondrial oxygen availability. Importantly, the addition of Ag5 significantly increased radiation-induced cell death in hypoxic conditions associated with radioresistance. Together, these data demonstrate Ag5 is a potent and cancer specific agent which could be used effectively in combination with radiotherapy.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.