具有欧氏观测值和未知协方差矩阵的 Lie Group 参数估计的 Cramér-Rao 约束

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Samy Labsir;Sara El Bouch;Alexandre Renaux;Jordi Vilà-Valls;Eric Chaumette
{"title":"具有欧氏观测值和未知协方差矩阵的 Lie Group 参数估计的 Cramér-Rao 约束","authors":"Samy Labsir;Sara El Bouch;Alexandre Renaux;Jordi Vilà-Valls;Eric Chaumette","doi":"10.1109/TSP.2024.3445606","DOIUrl":null,"url":null,"abstract":"This article addresses the problem of computing a Cramér-Rao bound when the likelihood of Euclidean observations is parameterized by both unknown Lie group (LG) parameters and covariance matrix. To achieve this goal, we leverage the LG structure of the space of positive definite matrices. In this way, we can assemble a global LG parameter that lies on the product of the two groups, on which LG's intrinsic tools can be applied. From this, we derive an inequality on the intrinsic error, which can be seen as the equivalent of the Slepian-Bangs formula on LGs. Subsequently, we obtain a closed-form expression of this formula for Euclidean observations. The proposed bound is computed and implemented on two real-world problems involving observations lying in \n<inline-formula><tex-math>$\\mathbb{R}^{p}$</tex-math></inline-formula>\n, dependent on an unknown LG parameter and an unknown noise covariance matrix: the Wahba's estimation problem on \n<inline-formula><tex-math>$SE(3)$</tex-math></inline-formula>\n, and the inference of the pose in \n<inline-formula><tex-math>$SE(3)$</tex-math></inline-formula>\n of a camera from pixel detections.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"130-141"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cramér-Rao Bound for Lie Group Parameter Estimation With Euclidean Observations and Unknown Covariance Matrix\",\"authors\":\"Samy Labsir;Sara El Bouch;Alexandre Renaux;Jordi Vilà-Valls;Eric Chaumette\",\"doi\":\"10.1109/TSP.2024.3445606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses the problem of computing a Cramér-Rao bound when the likelihood of Euclidean observations is parameterized by both unknown Lie group (LG) parameters and covariance matrix. To achieve this goal, we leverage the LG structure of the space of positive definite matrices. In this way, we can assemble a global LG parameter that lies on the product of the two groups, on which LG's intrinsic tools can be applied. From this, we derive an inequality on the intrinsic error, which can be seen as the equivalent of the Slepian-Bangs formula on LGs. Subsequently, we obtain a closed-form expression of this formula for Euclidean observations. The proposed bound is computed and implemented on two real-world problems involving observations lying in \\n<inline-formula><tex-math>$\\\\mathbb{R}^{p}$</tex-math></inline-formula>\\n, dependent on an unknown LG parameter and an unknown noise covariance matrix: the Wahba's estimation problem on \\n<inline-formula><tex-math>$SE(3)$</tex-math></inline-formula>\\n, and the inference of the pose in \\n<inline-formula><tex-math>$SE(3)$</tex-math></inline-formula>\\n of a camera from pixel detections.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"130-141\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643876/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643876/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了用未知李群参数和协方差矩阵参数化欧几里得观测值的似然时计算cram r- rao界的问题。为了达到这个目的,我们利用了正定矩阵空间的LG结构。这样,我们就可以组合一个全局的LG参数,这个参数取决于这两组的乘积,LG的内在工具可以在这个参数上应用。由此,我们导出了一个关于固有误差的不等式,它可以看作是等效于LGs上的Slepian-Bangs公式。随后,我们得到了这个公式在欧几里得观测下的封闭表达式。所提出的边界是在两个现实世界的问题上计算和实现的,这些问题涉及$\mathbb{R}^{p}$中的观测值,依赖于一个未知的LG参数和一个未知的噪声协方差矩阵:$SE(3)$上的Wahba估计问题,以及$SE(3)$中相机像素检测的姿态推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cramér-Rao Bound for Lie Group Parameter Estimation With Euclidean Observations and Unknown Covariance Matrix
This article addresses the problem of computing a Cramér-Rao bound when the likelihood of Euclidean observations is parameterized by both unknown Lie group (LG) parameters and covariance matrix. To achieve this goal, we leverage the LG structure of the space of positive definite matrices. In this way, we can assemble a global LG parameter that lies on the product of the two groups, on which LG's intrinsic tools can be applied. From this, we derive an inequality on the intrinsic error, which can be seen as the equivalent of the Slepian-Bangs formula on LGs. Subsequently, we obtain a closed-form expression of this formula for Euclidean observations. The proposed bound is computed and implemented on two real-world problems involving observations lying in $\mathbb{R}^{p}$ , dependent on an unknown LG parameter and an unknown noise covariance matrix: the Wahba's estimation problem on $SE(3)$ , and the inference of the pose in $SE(3)$ of a camera from pixel detections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信