{"title":"非对称加热条件下粘焦耳加热 MHD 微通道流的传热和熵生成","authors":"Antar Tahiri, Haroun Ragueb, Mustafa Moussaoui, Kacem Mansouri, Djemaa Guerraiche, Khelifa Guerraiche","doi":"10.1108/hff-05-2024-0380","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to present a numerical investigation into heat transfer and entropy generation resulting from magnetohydrodynamic laminar flow through a microchannel under asymmetric boundary conditions. Furthermore, the authors consider the effects of viscous dissipation and Joule heating.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The finite difference method is used to obtain the numerical solution. Simulations are conducted across a broad range of Hartmann (<em>Ha</em> = 0 ∼ 40) and Brinkman (<em>Br</em> = 0.01 ∼ 1) numbers, along with various asymmetric isothermal boundaries characterized by a heating ratio denoted as <em>ϕ</em>.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The findings indicate a significant increase in the Nusselt number with increasing Hartmann number, regardless of whether <em>Br</em> equals zero or not. In addition, it is demonstrated that temperature differences between the microchannel walls can lead to substantial distortions in fluid temperature distribution and heat transfer. The results reveal that the maximum entropy generation occurs at the highest values of Ha and <em>η</em> (a dimensionless parameter emerging from the formulation) obtained for <em>ϕ</em> = −1. Moreover, it is observed that local entropy generation rates are highest near the channel wall at the entrance region.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The study provides valuable insights into the complex interactions between magnetic fields, viscous dissipation and Joule heating in microchannel flows, particularly under asymmetric heating conditions. This contributes to a better understanding of heat transfer and entropy generation in advanced microfluidic systems, which is essential for optimizing their design and performance.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"30 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transfer and entropy generation in viscous-joule heating MHD microchannels flow under asymmetric heating\",\"authors\":\"Antar Tahiri, Haroun Ragueb, Mustafa Moussaoui, Kacem Mansouri, Djemaa Guerraiche, Khelifa Guerraiche\",\"doi\":\"10.1108/hff-05-2024-0380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper aims to present a numerical investigation into heat transfer and entropy generation resulting from magnetohydrodynamic laminar flow through a microchannel under asymmetric boundary conditions. Furthermore, the authors consider the effects of viscous dissipation and Joule heating.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The finite difference method is used to obtain the numerical solution. Simulations are conducted across a broad range of Hartmann (<em>Ha</em> = 0 ∼ 40) and Brinkman (<em>Br</em> = 0.01 ∼ 1) numbers, along with various asymmetric isothermal boundaries characterized by a heating ratio denoted as <em>ϕ</em>.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The findings indicate a significant increase in the Nusselt number with increasing Hartmann number, regardless of whether <em>Br</em> equals zero or not. In addition, it is demonstrated that temperature differences between the microchannel walls can lead to substantial distortions in fluid temperature distribution and heat transfer. The results reveal that the maximum entropy generation occurs at the highest values of Ha and <em>η</em> (a dimensionless parameter emerging from the formulation) obtained for <em>ϕ</em> = −1. Moreover, it is observed that local entropy generation rates are highest near the channel wall at the entrance region.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The study provides valuable insights into the complex interactions between magnetic fields, viscous dissipation and Joule heating in microchannel flows, particularly under asymmetric heating conditions. This contributes to a better understanding of heat transfer and entropy generation in advanced microfluidic systems, which is essential for optimizing their design and performance.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-05-2024-0380\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-05-2024-0380","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Heat transfer and entropy generation in viscous-joule heating MHD microchannels flow under asymmetric heating
Purpose
This paper aims to present a numerical investigation into heat transfer and entropy generation resulting from magnetohydrodynamic laminar flow through a microchannel under asymmetric boundary conditions. Furthermore, the authors consider the effects of viscous dissipation and Joule heating.
Design/methodology/approach
The finite difference method is used to obtain the numerical solution. Simulations are conducted across a broad range of Hartmann (Ha = 0 ∼ 40) and Brinkman (Br = 0.01 ∼ 1) numbers, along with various asymmetric isothermal boundaries characterized by a heating ratio denoted as ϕ.
Findings
The findings indicate a significant increase in the Nusselt number with increasing Hartmann number, regardless of whether Br equals zero or not. In addition, it is demonstrated that temperature differences between the microchannel walls can lead to substantial distortions in fluid temperature distribution and heat transfer. The results reveal that the maximum entropy generation occurs at the highest values of Ha and η (a dimensionless parameter emerging from the formulation) obtained for ϕ = −1. Moreover, it is observed that local entropy generation rates are highest near the channel wall at the entrance region.
Originality/value
The study provides valuable insights into the complex interactions between magnetic fields, viscous dissipation and Joule heating in microchannel flows, particularly under asymmetric heating conditions. This contributes to a better understanding of heat transfer and entropy generation in advanced microfluidic systems, which is essential for optimizing their design and performance.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf