线性统计逆向学习问题中的最小二乘逼近法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Tapio Helin
{"title":"线性统计逆向学习问题中的最小二乘逼近法","authors":"Tapio Helin","doi":"10.1137/22m1538600","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 2025-2047, August 2024. <br/> Abstract. Statistical inverse learning aims at recovering an unknown function [math] from randomly scattered and possibly noisy point evaluations of another function [math], connected to [math] via an ill-posed mathematical model. In this paper we blend statistical inverse learning theory with the classical regularization strategy of applying finite-dimensional projections. Our key finding is that coupling the number of random point evaluations with the choice of projection dimension, one can derive probabilistic convergence rates for the reconstruction error of the maximum likelihood (ML) estimator. Convergence rates in expectation are derived with a ML estimator complemented with a norm-based cutoff operation. Moreover, we prove that the obtained rates are minimax optimal.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"32 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Least Squares Approximations in Linear Statistical Inverse Learning Problems\",\"authors\":\"Tapio Helin\",\"doi\":\"10.1137/22m1538600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 2025-2047, August 2024. <br/> Abstract. Statistical inverse learning aims at recovering an unknown function [math] from randomly scattered and possibly noisy point evaluations of another function [math], connected to [math] via an ill-posed mathematical model. In this paper we blend statistical inverse learning theory with the classical regularization strategy of applying finite-dimensional projections. Our key finding is that coupling the number of random point evaluations with the choice of projection dimension, one can derive probabilistic convergence rates for the reconstruction error of the maximum likelihood (ML) estimator. Convergence rates in expectation are derived with a ML estimator complemented with a norm-based cutoff operation. Moreover, we prove that the obtained rates are minimax optimal.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1538600\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1538600","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》,第 62 卷第 4 期,第 2025-2047 页,2024 年 8 月。 摘要。统计逆学习旨在从随机分散且可能存在噪声的另一个函数[数学]的点评估中恢复未知函数[数学],该函数通过一个问题数学模型与[数学]相连。在本文中,我们将统计逆向学习理论与应用有限维投影的经典正则化策略相结合。我们的主要发现是,将随机点评估的数量与投影维度的选择结合起来,就能推导出最大似然(ML)估计器重建误差的概率收敛率。通过基于规范的截断操作对 ML 估计器进行补充,可以推导出期望收敛率。此外,我们还证明了所得到的收敛率是最小最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Least Squares Approximations in Linear Statistical Inverse Learning Problems
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 2025-2047, August 2024.
Abstract. Statistical inverse learning aims at recovering an unknown function [math] from randomly scattered and possibly noisy point evaluations of another function [math], connected to [math] via an ill-posed mathematical model. In this paper we blend statistical inverse learning theory with the classical regularization strategy of applying finite-dimensional projections. Our key finding is that coupling the number of random point evaluations with the choice of projection dimension, one can derive probabilistic convergence rates for the reconstruction error of the maximum likelihood (ML) estimator. Convergence rates in expectation are derived with a ML estimator complemented with a norm-based cutoff operation. Moreover, we prove that the obtained rates are minimax optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信