纤维增强自密实碱活性混凝土的挠曲和断裂性能--一种 DOE 方法

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"纤维增强自密实碱活性混凝土的挠曲和断裂性能--一种 DOE 方法","authors":"","doi":"10.1016/j.tafmec.2024.104630","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to their much-reduced carbon footprint and lower embodied energy, compared to conventional Portland Cement (OPC-based) Concrete mixes, Alkali Activated Concrete (AAC) mixes represent a pivotal advancement towards achieving sustainability goals. The fracture properties were investigated using Three-Point Bending Tests (3-PBT) under the mode I failure mechanism. This study utilises Taguchi analysis to analyse and optimise Self-Compacting Alkali-Activated Concrete (SAAC), focusing mainly on its flexural strength and fracture characteristics. An L-16 orthogonal array of experiments with three input parameters − replacement of Blast Furnace Slag (BFS) with Fly ash (FA) (0 %, 30 %, 40 %, and 50 %), Steel Fibers (SF) volume content (0 %, 0.25 %, 0.5 % and 0.75 %) and Notch to Depth (a<sub>0</sub>/d) ratio (0.2,0.3,0.4 and 0.5), at four levels each, was adopted. The Work of Fracture Method (WFM) and Double K Fracture Criterion (DKFC) were utilised to determine the Fracture Energy (G<sub>F</sub>) and fracture toughness, respectively. The results obtained from all the sixteen mixes showed that the F0-S0.75-N0.5 mix demonstrated better values in several parameters, such as flexural strength of 7.82 MPa,<span><math><mrow><mspace></mspace><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span> of 0.928 MPa√m, <span><math><mrow><msubsup><mrow><mspace></mspace><mtext>K</mtext></mrow><mrow><mtext>IC</mtext></mrow><mtext>uns</mtext></msubsup></mrow></math></span> of 6.99 MPa√m and <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span>/ <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>uns</mtext></msubsup></mrow></math></span> of 0.133. A maximum G<sub>F</sub> of 2350 N/m was obtained with F50-S0.75-N0.2 mix. However, all the inferior values of these parameters were observed with F50-S0-N0.5 mix, which recorded a flexural strength of 4.90 MPa, <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span> of 0.612 MPa√m,<span><math><mrow><msubsup><mrow><mspace></mspace><mtext>K</mtext></mrow><mrow><mtext>IC</mtext></mrow><mtext>uns</mtext></msubsup></mrow></math></span> of 1.16 MPa√m, <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span>/ <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>uns</mtext></msubsup></mrow></math></span> of 0.528 and G<sub>F</sub> of 125 N/m. Through Taguchi analysis, the optimal combination for flexural strength was identified as FA 0 %, SF 0.75 %, and a<sub>0</sub>/d 0.5 and for both Initial Fracture Toughness (<span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span>) and Unstable Fracture Toughness (<span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mrow><mtext>un</mtext><mtext>s</mtext></mrow></msubsup></mrow></math></span>) at FA 0 %, SF 0.75 % and a<sub>0</sub>/d 0.4. For both the ratio of initial to unstable fracture toughness (<span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span>/ <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mrow><mtext>un</mtext><mtext>s</mtext></mrow></msubsup></mrow></math></span>) and fracture energy (G<sub>F</sub>), the optimum combination was FA 0 %, SF 0.75 % and a<sub>0</sub>/d 0.2. Furthermore, the results indicate that FA significantly influences <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span>, while SF predominantly affects all other parameters. The predictive performance of the regression equations demonstrates good agreement with experimental outcomes.</p></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexural and fracture performance of fiber reinforced self compacting alkali activated concrete– A DOE approach\",\"authors\":\"\",\"doi\":\"10.1016/j.tafmec.2024.104630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Owing to their much-reduced carbon footprint and lower embodied energy, compared to conventional Portland Cement (OPC-based) Concrete mixes, Alkali Activated Concrete (AAC) mixes represent a pivotal advancement towards achieving sustainability goals. The fracture properties were investigated using Three-Point Bending Tests (3-PBT) under the mode I failure mechanism. This study utilises Taguchi analysis to analyse and optimise Self-Compacting Alkali-Activated Concrete (SAAC), focusing mainly on its flexural strength and fracture characteristics. An L-16 orthogonal array of experiments with three input parameters − replacement of Blast Furnace Slag (BFS) with Fly ash (FA) (0 %, 30 %, 40 %, and 50 %), Steel Fibers (SF) volume content (0 %, 0.25 %, 0.5 % and 0.75 %) and Notch to Depth (a<sub>0</sub>/d) ratio (0.2,0.3,0.4 and 0.5), at four levels each, was adopted. The Work of Fracture Method (WFM) and Double K Fracture Criterion (DKFC) were utilised to determine the Fracture Energy (G<sub>F</sub>) and fracture toughness, respectively. The results obtained from all the sixteen mixes showed that the F0-S0.75-N0.5 mix demonstrated better values in several parameters, such as flexural strength of 7.82 MPa,<span><math><mrow><mspace></mspace><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span> of 0.928 MPa√m, <span><math><mrow><msubsup><mrow><mspace></mspace><mtext>K</mtext></mrow><mrow><mtext>IC</mtext></mrow><mtext>uns</mtext></msubsup></mrow></math></span> of 6.99 MPa√m and <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span>/ <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>uns</mtext></msubsup></mrow></math></span> of 0.133. A maximum G<sub>F</sub> of 2350 N/m was obtained with F50-S0.75-N0.2 mix. However, all the inferior values of these parameters were observed with F50-S0-N0.5 mix, which recorded a flexural strength of 4.90 MPa, <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span> of 0.612 MPa√m,<span><math><mrow><msubsup><mrow><mspace></mspace><mtext>K</mtext></mrow><mrow><mtext>IC</mtext></mrow><mtext>uns</mtext></msubsup></mrow></math></span> of 1.16 MPa√m, <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span>/ <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>uns</mtext></msubsup></mrow></math></span> of 0.528 and G<sub>F</sub> of 125 N/m. Through Taguchi analysis, the optimal combination for flexural strength was identified as FA 0 %, SF 0.75 %, and a<sub>0</sub>/d 0.5 and for both Initial Fracture Toughness (<span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span>) and Unstable Fracture Toughness (<span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mrow><mtext>un</mtext><mtext>s</mtext></mrow></msubsup></mrow></math></span>) at FA 0 %, SF 0.75 % and a<sub>0</sub>/d 0.4. For both the ratio of initial to unstable fracture toughness (<span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span>/ <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mrow><mtext>un</mtext><mtext>s</mtext></mrow></msubsup></mrow></math></span>) and fracture energy (G<sub>F</sub>), the optimum combination was FA 0 %, SF 0.75 % and a<sub>0</sub>/d 0.2. Furthermore, the results indicate that FA significantly influences <span><math><mrow><msubsup><mtext>K</mtext><mrow><mtext>IC</mtext></mrow><mtext>ini</mtext></msubsup></mrow></math></span>, while SF predominantly affects all other parameters. The predictive performance of the regression equations demonstrates good agreement with experimental outcomes.</p></div>\",\"PeriodicalId\":22879,\"journal\":{\"name\":\"Theoretical and Applied Fracture Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016784422400380X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016784422400380X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

与传统的波特兰水泥(OPC)混凝土拌合物相比,碱活性混凝土(AAC)拌合物的碳足迹更小、能耗更低,因此在实现可持续发展目标方面具有举足轻重的地位。本研究使用三点弯曲试验(3-PBT)对模式 I 破坏机制下的断裂特性进行了研究。本研究利用田口分析法对自密实碱活性混凝土(SAAC)进行分析和优化,主要侧重于其抗弯强度和断裂特性。试验采用 L-16 正交阵列,三个输入参数分别为高炉矿渣(BFS)与粉煤灰(FA)的替代率(0 %、30 %、40 % 和 50 %)、钢纤维(SF)体积含量(0 %、0.25 %、0.5 % 和 0.75 %)以及缺口深度比(a0/d)(0.2、0.3、0.4 和 0.5),每个参数分为四个等级。断裂功法(WFM)和双 K 断裂标准(DKFC)分别用于确定断裂能(GF)和断裂韧性。从所有十六种混合料中得出的结果表明,F0-S0.75-N0.5 混合料在多个参数中表现出更好的值,如抗弯强度为 7.82 MPa,KICini 为 0.928 MPa√m,KICuns 为 6.99 MPa√m,KICini/ KICuns 为 0.133。F50-S0.75-N0.2 混合料的最大 GF 值为 2350 N/m。然而,F50-S0-N0.5 混合料的上述参数值均较低,其抗弯强度为 4.90 MPa,KICini 为 0.612 MPa√m,KICuns 为 1.16 MPa√m,KICini/ KICuns 为 0.528,GF 为 125 N/m。通过田口分析,确定了抗弯强度的最佳组合为 FA 0 %、SF 0.75 % 和 a0/d 0.5,初始断裂韧性(KICini)和不稳定断裂韧性(KICuns)的最佳组合为 FA 0 %、SF 0.75 % 和 a0/d 0.4。对于初始断裂韧性与不稳定断裂韧性之比(KICini/ KICuns)和断裂能(GF),最佳组合为 FA 0 %、SF 0.75 % 和 a0/d 0.2。此外,结果表明,FA 对 KICini 有显著影响,而 SF 则主要影响所有其他参数。回归方程的预测性能与实验结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexural and fracture performance of fiber reinforced self compacting alkali activated concrete– A DOE approach

Owing to their much-reduced carbon footprint and lower embodied energy, compared to conventional Portland Cement (OPC-based) Concrete mixes, Alkali Activated Concrete (AAC) mixes represent a pivotal advancement towards achieving sustainability goals. The fracture properties were investigated using Three-Point Bending Tests (3-PBT) under the mode I failure mechanism. This study utilises Taguchi analysis to analyse and optimise Self-Compacting Alkali-Activated Concrete (SAAC), focusing mainly on its flexural strength and fracture characteristics. An L-16 orthogonal array of experiments with three input parameters − replacement of Blast Furnace Slag (BFS) with Fly ash (FA) (0 %, 30 %, 40 %, and 50 %), Steel Fibers (SF) volume content (0 %, 0.25 %, 0.5 % and 0.75 %) and Notch to Depth (a0/d) ratio (0.2,0.3,0.4 and 0.5), at four levels each, was adopted. The Work of Fracture Method (WFM) and Double K Fracture Criterion (DKFC) were utilised to determine the Fracture Energy (GF) and fracture toughness, respectively. The results obtained from all the sixteen mixes showed that the F0-S0.75-N0.5 mix demonstrated better values in several parameters, such as flexural strength of 7.82 MPa,KICini of 0.928 MPa√m, KICuns of 6.99 MPa√m and KICini/ KICuns of 0.133. A maximum GF of 2350 N/m was obtained with F50-S0.75-N0.2 mix. However, all the inferior values of these parameters were observed with F50-S0-N0.5 mix, which recorded a flexural strength of 4.90 MPa, KICini of 0.612 MPa√m,KICuns of 1.16 MPa√m, KICini/ KICuns of 0.528 and GF of 125 N/m. Through Taguchi analysis, the optimal combination for flexural strength was identified as FA 0 %, SF 0.75 %, and a0/d 0.5 and for both Initial Fracture Toughness (KICini) and Unstable Fracture Toughness (KICuns) at FA 0 %, SF 0.75 % and a0/d 0.4. For both the ratio of initial to unstable fracture toughness (KICini/ KICuns) and fracture energy (GF), the optimum combination was FA 0 %, SF 0.75 % and a0/d 0.2. Furthermore, the results indicate that FA significantly influences KICini, while SF predominantly affects all other parameters. The predictive performance of the regression equations demonstrates good agreement with experimental outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信