MDADroid:通过构建功能-API 映射的新型恶意软件检测方法

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiyun Yang , Hanwei Li , Lijun He , Tao Xiang , Yujie Jin
{"title":"MDADroid:通过构建功能-API 映射的新型恶意软件检测方法","authors":"Jiyun Yang ,&nbsp;Hanwei Li ,&nbsp;Lijun He ,&nbsp;Tao Xiang ,&nbsp;Yujie Jin","doi":"10.1016/j.cose.2024.104061","DOIUrl":null,"url":null,"abstract":"<div><p>As the Android ecosystem develops, malware also evolves to adapt to the changes. Consequently, malware remains a significant threat, posing a challenge in developing a low-resource consumption malware detection method that can adjust to updates in the Android API versions. We propose a novel method called MDADroid, which detects malware based on self-built Functionality-API mapping. We start by building a set of permission-related APIs using open-source knowledge. Then, we construct a Functionality-App-API heterogeneous graph based on collected data and establish a Functionality-API mapping from it. Finally, MDADroid transforms app features from the API level to the functionality level for malware detection, ensuring model resilience to API changes. We also design an API similarity calculation method that updates the Functionality-API mapping at a low cost. We evaluate MDADroid on multiple datasets, and the results show that MDADroid achieves an accuracy of 95.22%, 96.23%, 98.77%, and 99.56% on the AndroZoo, CICAndMal 2017, CICMalDroid 2020, and Drebin datasets, respectively, with training and testing times of 2 s, 0.6188 s, 1.34 s, and 1.02 s. Moreover, our method demonstrates excellent performance in the tests for resilience capabilities.</p></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MDADroid: A novel malware detection method by constructing functionality-API mapping\",\"authors\":\"Jiyun Yang ,&nbsp;Hanwei Li ,&nbsp;Lijun He ,&nbsp;Tao Xiang ,&nbsp;Yujie Jin\",\"doi\":\"10.1016/j.cose.2024.104061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the Android ecosystem develops, malware also evolves to adapt to the changes. Consequently, malware remains a significant threat, posing a challenge in developing a low-resource consumption malware detection method that can adjust to updates in the Android API versions. We propose a novel method called MDADroid, which detects malware based on self-built Functionality-API mapping. We start by building a set of permission-related APIs using open-source knowledge. Then, we construct a Functionality-App-API heterogeneous graph based on collected data and establish a Functionality-API mapping from it. Finally, MDADroid transforms app features from the API level to the functionality level for malware detection, ensuring model resilience to API changes. We also design an API similarity calculation method that updates the Functionality-API mapping at a low cost. We evaluate MDADroid on multiple datasets, and the results show that MDADroid achieves an accuracy of 95.22%, 96.23%, 98.77%, and 99.56% on the AndroZoo, CICAndMal 2017, CICMalDroid 2020, and Drebin datasets, respectively, with training and testing times of 2 s, 0.6188 s, 1.34 s, and 1.02 s. Moreover, our method demonstrates excellent performance in the tests for resilience capabilities.</p></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824003663\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824003663","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着安卓生态系统的发展,恶意软件也在不断进化以适应变化。因此,恶意软件仍然是一个重大威胁,这给开发一种能适应安卓应用程序接口版本更新的低资源消耗恶意软件检测方法带来了挑战。我们提出了一种名为 MDADroid 的新方法,该方法基于自建的功能-API 映射来检测恶意软件。我们首先利用开源知识构建一组与权限相关的 API。然后,我们根据收集到的数据构建功能-应用程序-API 异构图,并从中建立功能-API 映射。最后,MDADroid 将应用程序特征从 API 层转换到功能层,用于恶意软件检测,确保模型对 API 变化的适应性。我们还设计了一种 API 相似性计算方法,可以低成本更新功能性-API 映射。我们在多个数据集上对 MDADroid 进行了评估,结果表明,MDADroid 在 AndroZoo、CICAndMal 2017、CICMalDroid 2020 和 Drebin 数据集上的准确率分别达到了 95.22%、96.23%、98.77% 和 99.56%,训练和测试时间分别为 2 秒、0.6188 秒、1.34 秒和 1.02 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MDADroid: A novel malware detection method by constructing functionality-API mapping

MDADroid: A novel malware detection method by constructing functionality-API mapping

As the Android ecosystem develops, malware also evolves to adapt to the changes. Consequently, malware remains a significant threat, posing a challenge in developing a low-resource consumption malware detection method that can adjust to updates in the Android API versions. We propose a novel method called MDADroid, which detects malware based on self-built Functionality-API mapping. We start by building a set of permission-related APIs using open-source knowledge. Then, we construct a Functionality-App-API heterogeneous graph based on collected data and establish a Functionality-API mapping from it. Finally, MDADroid transforms app features from the API level to the functionality level for malware detection, ensuring model resilience to API changes. We also design an API similarity calculation method that updates the Functionality-API mapping at a low cost. We evaluate MDADroid on multiple datasets, and the results show that MDADroid achieves an accuracy of 95.22%, 96.23%, 98.77%, and 99.56% on the AndroZoo, CICAndMal 2017, CICMalDroid 2020, and Drebin datasets, respectively, with training and testing times of 2 s, 0.6188 s, 1.34 s, and 1.02 s. Moreover, our method demonstrates excellent performance in the tests for resilience capabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信